Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Geochem Health ; 43(4): 1415-1426, 2021 Apr.
Article in English | MEDLINE | ID: mdl-32737634

ABSTRACT

The present study aimed to elucidate the remediation potential of visibly dominant, naturally growing plants obtained from an early colonized fly ash dump near a coal-based thermal power station. The vegetation comprised of grasses like Saccharum spontaneum L., Cynodon dactylon (L.) Pers., herbs such as Tephrosia purpurea (L.) Pers., Sida rhombifolia L., Dysphania ambrosioides (L.) Mosyakin & Clemants, Chromolaena odorata (L.) King & H.E. Robins along with tree saplings Butea monosperma (Lam.) Taub. The growth of the vegetation improved the N and P content of the ash. Average metal concentrations (mg kg-1) in the ash samples and plants were in order Mn (345.1) > Zn (63.7) > Ni (29.3) > Cu (16.8) > Cr (9.9) > Pb (1.7) > Cd (0.41) and Cr (58.58) > Zn (52.74) > Mn (39.09) > Cu (10.71) > Ni (7.45) > Pb (5.52) > Cd (0.14), respectively. The plants showed fly ash dump phytostabilization potential and accumulated Cr (80.19-178.11 mg kg-1) above maximum allowable concentrations for plant tissues. Positive correlations were also obtained for metal concentration in plant roots versus fly ash. Saccharum spontaneum showed highest biomass and is the most efficient plant which can be used for the restoration of ash dumps.


Subject(s)
Biodegradation, Environmental , Coal Ash , Environmental Pollutants/analysis , Metals/analysis , Plants/chemistry , Chromium/analysis , Chromium/pharmacokinetics , Coal , Coal Ash/analysis , Coal Ash/chemistry , Environmental Pollutants/pharmacokinetics , India , Metals/pharmacokinetics , Nitrogen/analysis , Plant Development , Plant Roots/chemistry , Plants/metabolism , Species Specificity
2.
Water Sci Technol ; 79(11): 2023-2035, 2019 Jun.
Article in English | MEDLINE | ID: mdl-31318340

ABSTRACT

Wastewaters discharged from various coal-related activities deteriorate fresh water quality and inflict possibilities of groundwater contamination. Their characteristics mostly depend on the parent coal properties, though some of the pollutants are cyanide, thiocyanate, ammonia, phenol, heavy metals and suspended solids. This paper has reviewed the treatment techniques along with the characteristics of all such kinds of wastewater and also identified the challenges and future perspectives. Primarily, demineralization of coal can attenuate and control release of pollutants in wastewaters if implemented successfully. Mine water from non-lignite mines can be purified using simple techniques, for its reutilization. Acidic mine water and leachates can be treated using passive bioreactors with microbial activity, different organic substrates and limestone drains. Additionally bio-electrochemical systems, membranes, macrocapsules, zeolite filters, ores, physical barriers, and aquatic plants can also be used at various stages. Coal washery wastewater can be treated using natural coagulants obtained from plant extracts along with conventional coagulants. Nitrification and denitrification bacteria fixed in reactors along with activated carbon and zero-valent iron can treat coke oven wastewater. Some other sophisticated techniques are vacuum distillation, super critical oxidation, nanofiltration and reverse osmosis. Practical use of these methods, wisely in an integrated way, can reduce freshwater consumption.


Subject(s)
Coal , Industrial Waste/analysis , Waste Management , Wastewater , Water Pollutants, Chemical/analysis , Bioreactors , Coke
SELECTION OF CITATIONS
SEARCH DETAIL
...