Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
Add more filters










Publication year range
1.
ACS Phys Chem Au ; 4(3): 268-280, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38800728

ABSTRACT

Phase-separated protein accumulation through the formation of several aggregate species is linked to the pathology of several human disorders and diseases. Our current investigation envisaged detailed Raman signature and structural intricacy of bovine insulin in its various forms of aggregates produced in situ at an elevated temperature (60 °C). The amide I band in the Raman spectrum of the protein in its native-like conformation appeared at 1655 cm-1 and indicated the presence of a high content of α-helical structure as prepared freshly in acidic pH. The disorder content (turn and coils) also was predominately present in both the monomeric and oligomeric states and was confirmed by the presence shoulder amide I maker band at ∼1680 cm-1. However, the band shifted to ∼1671 cm-1 upon the transformation of the protein solution into fibrillar aggregates as produced for a longer time of incubation. The protein, however, maintained most of its helical conformation in the oligomeric phase; the low-frequency backbone α-helical conformation signal at ∼935 cm-1 was similar to that of freshly prepared aqueous protein solution enriched in helical conformation. The peak intensity was significantly weak in the fibrillar aggregates, and it appeared as a good Raman signature to follow the phase separation and the aggregation behavior of insulin and similar other proteins. Tyrosine phenoxy moieties in the protein may maintained its H-bond donor-acceptor integrity throughout the course of fibril formation; however, it entered in more hydrophobic environment in its journey of fibril formation. In addition, it was noticed that oligomeric bovine insulin maintained the orientation/conformation of the disulfide bonds. However, in the fibrillar state, the disulfide linkages became more strained and preferred to maintain a single conformation state.

2.
Int J Biol Macromol ; 253(Pt 1): 126683, 2023 Dec 31.
Article in English | MEDLINE | ID: mdl-37666396

ABSTRACT

Parkinson's disease (PD) is linked to α-synuclein (aS) aggregation and deposition of amyloid in the substantia nigra region of the brain tissues. In the current investigation we produced two distinct classes of aS oligomer of differed protein conformation, stability and compared their toxic nature to cultured neuronal cells. Lyophilized oligomer (LO) was produced in storage of aS at-20 °C for 7 days and it was enriched with loosely hold molten globule like structure with residues having preferences for α-helical conformational space. The size of the oligomer was 4-5.5 nm under AFM. This kind of oligomer exhibited potential toxicity towards neuronal cell lines and did not transform into compact ß-sheet rich amyloid fiber even after incubation at 37 °C for several days. Formation of another type of oligomer was often observed in the lag phase of aS fibrillation that often occurred at an elevated temperature (37 °C). This kind of heat induced oligomer (IO) was more hydrophobic and relatively less toxic to neuronal cells compared to lyophilized oligomer (LO). Importantly, initiation of hydrophobic zipping of aS caused the transformation of IO into thermodynamically stable ß-sheet rich amyloid fibril. On the other hand, the presence of molten globule like conformation in LO, rendered greater toxicity to cultured neuronal cells.


Subject(s)
Parkinson Disease , alpha-Synuclein , Humans , alpha-Synuclein/chemistry , Parkinson Disease/metabolism , Protein Conformation , Neurons/metabolism , Protein Conformation, beta-Strand , Amyloid/chemistry , Amyloidogenic Proteins
3.
Front Chem ; 11: 1145877, 2023.
Article in English | MEDLINE | ID: mdl-37304685

ABSTRACT

Parkinson's disease is an age-related neurological disorder, and the pathology of the disease is linked to different types of aggregates of α-synuclein or alpha-synuclein (aS), which is an intrinsically disordered protein. The C-terminal domain (residues 96-140) of the protein is highly fluctuating and possesses random/disordered coil conformation. Thus, the region plays a significant role in the protein's solubility and stability by an interaction with other parts of the protein. In the current investigation, we examined the structure and aggregation behavior of two artificial single point mutations at a C-terminal residue at position 129 that represent a serine residue in the wild-type human aS (wt aS). Circular Dichroism (CD) and Raman spectroscopy were performed to analyse the secondary structure of the mutated proteins and compare it to the wt aS. Thioflavin T assay and atomic force microscopy imaging helped in understanding the aggregation kinetics and type of aggregates formed. Finally, the cytotoxicity assay gave an idea about the toxicity of the aggregates formed at different stages of incubation due to mutations. Compared to wt aS, the mutants S129A and S129W imparted structural stability and showed enhanced propensity toward the α-helical secondary structure. CD analysis showed proclivity of the mutant proteins toward α-helical conformation. The enhancement of α-helical propensity lengthened the lag phase of fibril formation. The growth rate of ß-sheet-rich fibrillation was also reduced. Cytotoxicity tests on SH-SY5Y neuronal cell lines established that the S129A and S129W mutants and their aggregates were potentially less toxic than wt aS. The average survivability rate was ∼40% for cells treated with oligomers (presumably formed after 24 h of incubation of the freshly prepared monomeric protein solution) produced from wt aS and ∼80% for cells treated with oligomers obtained from mutant proteins. The relative structural stability with α-helical propensity of the mutants could be a plausible reason for their slow rate of oligomerization and fibrillation, and this was also the possible reason for reduced toxicity to neuronal cells.

4.
Chem Commun (Camb) ; 59(52): 8095-8098, 2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37293871

ABSTRACT

Our studies show Coomassie Brilliant Blue G-250 as a promising chemical chaperone that stabilises the α-helical native human insulin conformers, disrupting their aggregation. Furthermore, it also increases the insulin secretion. This multipolar effect coupled with its non-toxic nature could be useful for developing highly bioactive, targeted and biostable therapeutic insulin.


Subject(s)
Insulins , Rosaniline Dyes , Humans , Molecular Chaperones
5.
Langmuir ; 39(21): 7231-7248, 2023 05 30.
Article in English | MEDLINE | ID: mdl-37094111

ABSTRACT

Misfolding and self-assembly of several intrinsically disordered proteins into ordered ß-sheet-rich amyloid aggregates emerged as hallmarks of several neurodegenerative disorders such as Alzheimer's and Parkinson's diseases. Here we show how the naringenin-embedded nanostructure effectively retards aggregation and fibril formation of α-synuclein, which is strongly associated with the pathology of Parkinson's-like diseases. Naringenin is a polyphenolic compound from a plant source, and in our current investigation, we reported the one-pot synthesis of naringenin-coated spherical and monophasic gold nanoparticles (NAR-AuNPs) under optimized conditions. The average hydrodynamic diameter of the produced nanoparticle was ∼24 nm and showed a distinct absorption band at 533 nm. The zeta potential of the nanocomposite was ∼-22 mV and indicated the presence of naringenin on the surface of nanoparticles. Core-level XPS spectrum analysis showed prominent peaks at 84.02 and 87.68 eV, suggesting the zero oxidation state of metal in the nanostructure. Additionally, the peaks at 86.14 and 89.76 eV were due to the Au-O bond, induced by the hydroxyl groups of the naringenin molecule. The FT-IR analysis further confirmed strong interactions of the molecule with the gold nanosurface via the phenolic oxygen group. The composite surface was found to interact with monomeric α-synuclein and caused a red shift in the nanoparticle absorption band by ∼5 nm. The binding affinity of the composite nanostructure toward α-synuclein was in the micromolar range (Ka∼ 5.02 × 106 M-1) and may produce a protein corona over the gold nanosurface. A circular dichroism study showed that the nanocomposite can arrest the conformational fluctuation of the protein and hindered its transformation into a compact cross-ß-sheet conformation, a prerequisite for amyloid fibril formation. Furthermore, it was found that naringenin and its nanocomplex did not perturb the viability of neuronal cells. It thus appeared that engineering of the nanosurface with naringenin could be an alternative strategy in developing treatment approaches for Parkinson's and other diseases linked to protein conformation.


Subject(s)
Metal Nanoparticles , Parkinson Disease , Humans , alpha-Synuclein/chemistry , Parkinson Disease/etiology , Parkinson Disease/metabolism , Parkinson Disease/pathology , Gold/chemistry , Spectroscopy, Fourier Transform Infrared , Metal Nanoparticles/chemistry , Amyloid/chemistry
6.
J Chem Inf Model ; 63(7): 2122-2132, 2023 04 10.
Article in English | MEDLINE | ID: mdl-36943246

ABSTRACT

Molecular mechanics play an important role in enzyme action and understanding the dynamics of loop motion is key for designing inhibitors of an enzyme, particularly targeting the allosteric sites. For the successful creation of new protease inhibitors targeting the dengue serine protease, our current investigation detailed the intricate structural dynamics of NS2B/NS3 dengue protease. This enzyme is one of the most essential enzymes in the life cycle of the dengue virus, which is responsible for the activation/processing of viral polyprotein, thus making it a potential target for drug discovery. We showed that the internal dynamics of two regions, fingers 1 and 2 (R24-G39 and L149-A164, respectively) adjacent to the active site triad of this protease, control the enzyme action. Each of these regions is composed of two antiparallel ß-strands connected by ß-turn/hairpin loops. The correlated bending and rocking motions in the two ß-turns on either side of the active site were found to modulate the activity of the enzyme to a large extent. With increasing concentration of cosolvent dimethyl sulfoxide, correlated motions in the finger 2 region get diminished and bending of finger 1 increases, which are also reflected in the loss of enzyme activity. Decreasing temperature and mutations in neighboring nonsubstrate binding residues show similar effects on loop motion and enzyme kinetics. Therefore, in vitro noninvasive perturbation of these motions by the solvent exchange as well as cold stress in combination with in silico molecular dynamics simulations established the importance of the two ß-turns in the functioning of dengue virus serotype 2 NS2B/NS3 serine protease.


Subject(s)
Dengue Virus , Dengue , Humans , Solvents , Dengue Virus/metabolism , Viral Nonstructural Proteins/chemistry , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Dengue/drug therapy , Serine Proteases/pharmacology
7.
ACS Omega ; 7(2): 2484-2485, 2022 Jan 18.
Article in English | MEDLINE | ID: mdl-35071936

ABSTRACT

[This corrects the article DOI: 10.1021/acsomega.8b00419.].

8.
PLoS One ; 16(9): e0257206, 2021.
Article in English | MEDLINE | ID: mdl-34506566

ABSTRACT

Dengue virus (DENV) encodes a unique protease (NS3/NS2B) essential for its maturation and infectivity and, it has become a key target for anti-viral drug design to treat dengue and other flavivirus related infections. Present investigation established that some of the drug molecules currently used mainly in cancer treatment are susceptible to bind non-active site (allosteric site/ cavity) of the NS3 protease enzyme of dengue virus. Computational screening and molecular docking analysis found that dabrafenib, idelalisib and nintedanib can bind at the allosteric site of the enzyme. The binding of the molecules to the allosteric site found to be stabilized via pi-cation and hydrophobic interactions, hydrogen-bond formation and π-stacking interaction with the molecules. Several interacting residues of the enzyme were common in all the five serotypes. However, the interaction/stabilizing forces were not uniformly distributed; the π-stacking was dominated with DENV3 proteases, whereas, a charged/ionic interaction was the major force behind interaction with DENV2 type proteases. In the allosteric cavity of protease from DENV1, the residues Lys73, Lys74, Thr118, Glu120, Val123, Asn152 and Ala164 were involved in active interaction with the three molecules (dabrafenib, idelalisib and nintedanib). Molecular dynamics (MD) analysis further revealed that the molecules on binding to NS3 protease caused significant changes in structural fluctuation and gained enhanced stability. Most importantly, the binding of the molecules effectively perturbed the protein conformation. These changes in the protein conformation and dynamics could generate allosteric modulation and thus may attenuate/alter the NS3 protease functionality and mobility at the active site. Experimental studies may strengthen the notion whether the binding reduce/enhance the catalytic activity of the enzyme, however, it is beyond the scope of this study.


Subject(s)
Imidazoles/pharmacology , Indoles/pharmacology , Oximes/pharmacology , Purines/pharmacology , Quinazolinones/pharmacology , Amino Acid Sequence , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Imidazoles/chemistry , Indoles/chemistry , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , Oximes/chemistry , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Protein Structure, Secondary , Purines/chemistry , Quinazolinones/chemistry , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/chemistry
9.
ACS Chem Neurosci ; 12(15): 2903-2916, 2021 08 04.
Article in English | MEDLINE | ID: mdl-34292711

ABSTRACT

Solvent dynamics strongly induce the fibrillation of an amyloidogenic system. Probing the solvation mechanism is crucial as it enables us to predict different proteins' functionalities, such as the aggregation propensity, structural flexibility, and toxicity. This work shows that a straightforward NMR method in conjunction with phenomenological models gives a global and qualitative picture of water dynamics at different concentrations and temperatures. Here, we study amyloid system Aß40 and its fragment AV20 (A21-V40) and G37L (mutation at Gly37 → Leu of AV20), having different aggregation and toxic properties. The independent validation of this method is elucidated using all-atom classical MD simulation. These two state-of-the-art techniques are pivotal in linking the effect of solvent environment in the near hydration-shell to their aggregation nature. The time-dependent modulation in solvent dynamics probed with the NMR solvent relaxation method can be further adopted to gain insight into amyloidogenesis and link with their toxicity profiles.


Subject(s)
Protein Aggregates , Water , Amyloid beta-Peptides , Molecular Dynamics Simulation , Solvents
10.
RSC Adv ; 11(17): 10094-10109, 2021 Mar 05.
Article in English | MEDLINE | ID: mdl-35423527

ABSTRACT

We report herein the development of a new pyridine-pyrazole based bis-bidentate asymmetric chemosensor that shows excellent turn-on chelation-enhanced Al3+-responsive fluorescence. The presence of two 'hard' phenolic hydroxyl groups plays a pivotal role in switching-on the sensing through coordination to the 'hard' Al3+ ion, while the mechanism can be interpreted by the chelation-enhanced fluorescence (CHEF) process. The X-ray single structure show a planar conjugated structure of the ligand, which was further stabilized by extensive H-bonding and π-π stacking. The photophysical studies related to the sensing behavior of the titular ligand toward aluminum was investigated in detail using various spectroscopic techniques like UV-Vis, photoluminescence, fluorescence and time-correlated single-photon count (TCSPC) and time-resolved NMR. The spectroscopic methods also confirm the selective detection of Al3+ ion in the presence of other metal ions. The theoretical calculations using Density Functional Theory (DFT) and the Time Dependent Density Functional Theory (TD-DFT) provide further insight on the mechanistic aspects of the turn-on sensing behavior including the electronic spectra of both the ligand and the complex. Interestingly, the as-synthesized H2DPC-Al complex can also be utilized as a fluorescence-based sensor for various nitroaromatics including picric acid, for which an INHIBIT logic gate can also be constructed. The as synthesized complex was subsequently used as a fluorescent probe for imaging of human breast adenocarcinoma (MCF7) cells using live cell confocal microscopic techniques.

11.
RSC Adv ; 11(6): 3354-3362, 2021 Jan 14.
Article in English | MEDLINE | ID: mdl-35424305

ABSTRACT

Aggregation of intrinsically disordered as well as the ordered proteins under certain premises or physiological conditions leads to pathological disorder. Here we have presented a detailed investigation on the effect of a porous metallic (Au) and a non-metallic (Si) nanomaterial on the formation of ordered (fiber-like/amyloid) and disordered (amorphous) aggregates of proteins. Porous nanogold (PNG) was found to reduce the amyloid aggregation of insulin but does not have much impact on the lag phase in the aggregation kinetics, whereas porous nano-silica (PNS) was found both to decrease the amount of aggregation as well as prolong the lag phase of amyloid fiber formation from insulin. On the other hand, both the porous nanoparticles are found to decrease the extent of amorphous aggregation (with slight improvement for PNS) of pathogenic huntingtin (Htt) protein in Huntington's disease cell model. This is a noted direct observation in controlling and understanding protein aggregation diseases which may help us to formulate nanotherapeutic drugs for future clinical applications.

12.
J Phys Chem B ; 124(7): 1125-1136, 2020 02 20.
Article in English | MEDLINE | ID: mdl-31958230

ABSTRACT

Insulin, a simple polypeptide hormone with huge biological importance, has long been known to self-assemble in vitro and form amyloid-like fibrillar aggregates. Utilizing high-resolution NMR, Raman spectroscopy, and computational analysis, we demonstrate that the fluctuation of the carboxyl terminal (C-ter) residues of the insulin B-chain plays a key role in the growth phase of insulin aggregation. By comparing the insulin sourced from bovine, human, and the modified glargine (GI), we observed reduced aggregation propensity in the GI variant, resulting from two additional Arg residues at its C-ter. NMR analysis showed atomic contacts and residue-specific interactions, particularly the salt bridge and H-bond formed among the C-ter residues Arg31B, Lys29B, and Glu4A. These inter-residue interactions were reflected in strong nuclear Overhauser effects among Arg31BδH-Glu4AδH and Lys29BδHs-Glu4AδH in GI, as well as the associated downfield chemical shift of several A-chain amino terminal (N-ter) residues. The two additional Arg residues of GI, Arg31B and Arg32B, enhanced the stability of the GI native structure by strengthening the Arg31B, Lys29B, and Glu4A salt bridge, thus reducing extensive thermal distortion and fluctuation of the terminal residues. The high stability of the salt bridge retards tertiary collapse, a crucial biochemical event for oligomerization and subsequent fibril formation. Circular dichroism and Raman spectroscopic measurement also suggest slow structural distortion in the early phase of the aggregation of GI because of the restricted mobility of the C-ter residues as explained by NMR. In addition, the structural and dynamic parameters derived from molecular dynamics simulations of insulin variants highlight the role of residue-specific contacts in aggregation and amyloid-like fibril formation.


Subject(s)
Insulin/chemistry , Magnetic Resonance Spectroscopy/methods , Salts/chemistry , Spectrum Analysis, Raman/methods , Amino Acid Sequence , Circular Dichroism , Kinetics , Protein Conformation
13.
J Phys Chem B ; 124(1): 50-60, 2020 01 09.
Article in English | MEDLINE | ID: mdl-31820990

ABSTRACT

Lysozyme, like many other well-folded globular proteins, under stressful conditions produces nanoscale oligomer assembly and amyloid-like fibrillar aggregates. With engaging Raman microscopy, we made a critical structural analysis of oligomer and other assembly structures of lysozyme obtained from hen egg white and provided a quantitative estimation of a protein secondary structure in different states of its fibrillation. A strong amide I Raman band at 1660 cm-1 and a N-Cα-C stretching band at ∼930 cm-1 clearly indicated the presence of a substantial amount of α-helical folds of the protein in its oligomeric assembly state. In addition, analysis of the amide III region and Raman difference spectra suggested an ample presence of a PPII-like secondary structure in these oligomers without causing major loss of α-helical folds, which is found in the case of monomeric samples. Circular dichroism study also revealed the presence of typical α-helical folds in the oligomeric state. Nonetheless, most of the Raman bands associated with aromatic residues and disulfide (-S-S-) linkages broadened in the oligomeric state and indicated a collapse in the tertiary structure. In the fibrillar state of assembly, the amide I band became much sharper and enriched with the ß-sheet secondary structure. Also, the disulfide bond vibration in matured fibrils became much weaker compared to monomer and oligomers and thus confirmed certain loss/cleavage of this bond during fibrillation. The Raman band of tryptophan and tyrosine residues indicated that some of these residues experienced a greater hydrophobic microenvironment in the fibrillar state than the protein in the oligomeric state of the assembly structure.


Subject(s)
Muramidase/chemistry , Protein Aggregates/physiology , Animals , Chickens , Disulfides/chemistry , Hydrogen-Ion Concentration , Muramidase/metabolism , Protein Conformation, alpha-Helical , Protein Structure, Secondary , Spectrum Analysis, Raman
14.
ACS Omega ; 3(2): 2452-2462, 2018 Feb 28.
Article in English | MEDLINE | ID: mdl-30023834

ABSTRACT

Engaging Raman spectroscopy as a primary tool, we investigated the early events of insulin fibrilization and determined the structural content present in oligomer and protofibrils that are formed as intermediates in the fibril formation pathway. Insulin oligomer, as obtained upon incubation of zinc-free insulin at 60 °C, was mostly spherical in shape, with a diameter of 3-5 nm. Longer incubation produced "necklace"-like beaded protofibrillar assembly species. These intermediates eventually transformed into 5-8 nm thick fibers with smooth surface texture. A broad amide I band in the Raman spectrum of insulin monomer appeared at 1659 cm-1, with a shoulder band at 1676 cm-1. This signature suggested the presence of major helical and extended secondary structure of the protein backbone. In the oligomeric state, the protein maintained its helical imprint (∼50%) and no substantial increment of the compact cross-ß-sheet structure was observed. A nonamide helix signature band at 940 cm-1 was present in the oligomeric state, and it was weakened in the fibrillar structure. The 1-anilino-8-naphthalene-sulfonate binding study strongly suggested that a collapse in the tertiary structure, not the major secondary structural realignment, was the dominant factor in the formation of oligomers. In the fibrillar state, the contents of helical and disordered secondary structures decreased significantly and the ß-sheet amount increased to ∼62%. The narrow amide I Raman band at 1674 cm-1 in the fibrillar state connoted the formation of vibrationally restricted highly organized ß-sheet structure with quaternary realignment into steric-zipped species.

15.
ACS Omega ; 3(4): 4602-4619, 2018 Apr 30.
Article in English | MEDLINE | ID: mdl-30023896

ABSTRACT

With an aim to overcome multidrug resistance (MDR), nontargeted delivery, and drug toxicity, we developed a new nanochemotherapeutic system with tetrasodium salt of meso-tetrakis(4-sulfonatophenyl)porphyrin (TPPS) armored on gold nanoparticles (TPPS-AuNPs). The nanocarrier is able to be selectively internalized within tumor cells than in normal cells followed by endocytosis and therefore delivers the antitumor drug doxorubicin (DOX) particularly to the nucleus of diseased cells. The embedment of TPPS on the gold nanosurface provides excellent stability and biocompatibility to the nanoparticles. Porphyrin interacts with the gold nanosurface through the coordination interaction between gold and pyrrolic nitrogen atoms of the porphyrin and forms a strong association complex. DOX-loaded nanocomposite (DOX@TPPS-AuNPs) demonstrated enhanced cellular uptake with significantly reduced drug efflux in MDR brain cancer cells, thereby increasing the retention time of the drug within tumor cells. It exhibited about 9 times greater potency for cellular apoptosis via triggered release commenced by acidic pH. DOX has been successfully loaded on the porphyrin-modified gold nanosurface noncovalently with high encapsulation efficacy (∼90%) and tightly associated under normal physiological conditions but capable of releasing ∼81% of drug in a low-pH environment. Subsequently, DOX-loaded TPPS-AuNPs exhibited higher inhibition of cellular metastasis, invasion, and angiogenesis, suggesting that TPPS-modified AuNPs could improve the therapeutic efficacy of the drug molecule. Unlike free DOX, drug-loaded TPPS-AuNPs did not show toxicity toward normal cells. Therefore, higher drug encapsulation efficacy with selective targeting potential and acidic-pH-mediated intracellular release of DOX at the nucleus make TPPS-AuNPs a "magic bullet" for implication in nanomedicine.

16.
J Phys Chem B ; 121(26): 6367-6379, 2017 07 06.
Article in English | MEDLINE | ID: mdl-28593765

ABSTRACT

Both hydrogen-bonding and hydrophobic interactions play a significant role in molecular assembly, including self-assembly of proteins and peptides. In this study, we report the formation of annular protofibrillar structure (diameter ∼500 nm) made of a newly synthesized s-benzyl-protected cysteine tripeptide, which was primarily stabilized by hydrogen-bonding and hydrophobic interactions. Atomic force microscopy and field emission scanning electron microscopy analyses found small oligomers (diameter ∼60 nm) to bigger annular (outer diameter ∼300 nm; inner diameter, 100 nm) and protofibrillar structures after 1-2 days of incubation. Rotating-frame Overhauser spectroscopic (ROESY) analysis revealed the presence of several nonbonded proton-proton interactions among the residues, such as amide protons with methylene group, aromatic protons with tertiary butyl group, and methylene protons with tertiary butyl group. These added significant stability to bring the peptides closer to form a well-ordered assembled structure. Hydrogen-deuterium exchange NMR measurement further suggested that two individual amide protons among the three amide groups were strongly engaged with the adjacent tripeptide via H-bond interaction. However, the remaining amide proton was found to be exposed to solvent and remained noninteracting with other tripeptide molecules. In addition to chemical shift values, a significant change in amide bond vibrations of the tripeptide was found due to the formation of the self-assembled structure. The amide I mode of vibrations involving two amide linkages appeared at 1641 and 1695 cm-1 in the solid state. However, in the assembled state, the stretching band at 1695 cm-1 became broad and slightly shifted to ∼1689 cm-1. On the contrary, the band at 1641 cm-1 shifted to 1659 cm-1 and indicated that the -C═O bond associated with this vibration became stronger in the assembled state. These changes in Fourier transform infrared spectroscopy frequency clearly indicated changes in the amide backbone conformation and the associated hydrogen-bonding pattern due to the formation of the assembled structure. In addition to hydrogen bonding, molecular dynamics simulation indicated that the number of π-π interactions also increased with increasing number of tripeptides participated in the self-assembly process. Combined results envisaged a cross ß-sheet assembly unit consisting of four intermolecular hydrogen bonds. Such noncovalent peptide assemblies glued by hydrogen-bonding and other weak forces may be useful in developing nanocapsule and related materials.


Subject(s)
Cysteine/chemistry , Molecular Dynamics Simulation , Nuclear Magnetic Resonance, Biomolecular , Oligopeptides/chemistry , Oligopeptides/chemical synthesis , Hydrogen Bonding , Hydrophobic and Hydrophilic Interactions , Molecular Structure , Particle Size , Spectroscopy, Fourier Transform Infrared , Surface Properties
17.
J Nat Prod ; 80(5): 1347-1353, 2017 05 26.
Article in English | MEDLINE | ID: mdl-28493718

ABSTRACT

Neem (Azadirachta indica) is a well-known medicinal and insecticidal plant. Although previous studies have reported the antiulcer activity of neem leaf extract, the lead compound is still unidentified. The present study reports tamarixetin 3-O-ß-d-glucopyranoside (1) from a methanol extract of neem leaves and its gastroprotective activity in an animal model. Compound 1 showed significant protection against indomethacin-induced gastric ulceration in mice in a dose-dependent manner. Moreover, ex vivo and circular dichroism studies confirmed that 1 inhibited the enzyme matrix metalloproteinase-9 (MMP-9) activity with an IC50 value of ca. 50 µM. Molecular docking and dynamics showed the binding of 1 into the pocket of the active site of MMP-9, forming a coordination complex with the catalytic zinc, thus leading to inhibition of MMP-9 activity.


Subject(s)
Anti-Ulcer Agents/pharmacology , Azadirachta/chemistry , Disaccharides/isolation & purification , Disaccharides/pharmacology , Indomethacin/pharmacology , Matrix Metalloproteinase 9/chemistry , Quercetin/analogs & derivatives , Animals , Anti-Ulcer Agents/chemistry , Disaccharides/chemistry , Indomethacin/chemistry , Matrix Metalloproteinase 9/metabolism , Mice , Molecular Docking Simulation , Molecular Structure , Phytotherapy , Plant Leaves , Quercetin/chemistry , Quercetin/isolation & purification , Quercetin/pharmacology
18.
ACS Omega ; 2(8): 4316-4327, 2017 Aug 31.
Article in English | MEDLINE | ID: mdl-31457723

ABSTRACT

In Alzheimer's disease (AD), amyloid ß (Aß) protein plays a detrimental role in neuronal injury and death. Recent in vitro and in vivo studies suggest that soluble oligomers of the Aß peptide are neurotoxic. Structural properties of the oligomeric assembly, however, are largely unknown. Our present investigation established that the 40-residue-long Aß peptide (Aß40) became more helical, ordered, and compact in the oligomeric state, and both the helical and ß-sheet components were found to increase significantly in the early event of oligomerization. The band-selective two-dimensional NMR analysis suggested that majority of the residues from sequence 12 to 22 gained a higher-ordered secondary structure in the oligomeric condition. The presence of a significant amount of helical conformation was confirmed by Raman bands at 1650 and 1336 cm-1. Other residues remained mostly in the extended polyproline II (PPII) and less compact ß-conformation space. In the event of maturation of the oligomers into an amyloid fiber, both the helical content and the PPII-like structural components declined and ∼72% residues attained a compact ß-sheet structure. Interestingly, however, some residues remained in the collagen triple helix/extended 2.51-helix conformation as evidenced by the amide III Raman signature band at 1272 cm-1. Molecular dynamics analysis using an optimized potential for liquid simulation force field with the peptide monomer indicated that some of the residues may have preferences for helical conformation and this possibly contributed in the event of oligomer formation, which eventually became a ß-sheet-rich amyloid fiber.

19.
J Phys Chem A ; 120(49): 9829-9840, 2016 Dec 15.
Article in English | MEDLINE | ID: mdl-27973793

ABSTRACT

The proline residue in a protein sequence generates constraints to its secondary structure as the associated torsion angles become a part of the heterocyclic ring. It becomes more significant when two consecutive proline residues link via amide linkage and produce additional configurational constraint to a protein's folding and stability. In the current manuscript we have illustrated conformation preference of a novel dipeptide, (R)-tert-butyl 2-((S)-2-(methoxycarbonyl)pyrrolidine-1-carbonyl)pyrrolidine-1-carboxylate. The dipeptide crystallized in the orthorhombic crystalline state and produced rod-shaped macroscopic material. The analysis of the crystal coordinates showed dihedral angles (φ, ψ) of the interlinked amide groups as (+72°, -147°) and the dihedral angles (φ, ψ) produced with the next carbonyl were (-68°, +151°), indicating polyglycine II (PGII) and polyproline II (PPII)-like helix states at the N- and C-terminals, respectively. These two states, PGII and PPII, are mirror image configurations and are expected to produce similar vibration bands from the associated carbonyl groups. However, the unique atomic arrangement in the molecule produces three carbonyl groups and one of them was very specific, being part of the main peptide linkage that connects both the pyrrolidine rings. The carbonyl group in the peptide bond exhibited a Raman vibration frequency at ∼1642 cm-1 and is considered a signatory Raman marker band for the peptide bond linking two heterochiral proline residues. The carbonyl group (t-Boc) at the N-terminal of the peptide showed a characteristic vibration at ∼1685 cm-1 and the C-terminal carbonyl group as a part of the ester showed a vibration signature at a significantly high frequency (1746 cm-1). Conformation analyses performed with density functional theory (DFT) calculations depicted that the dipeptide was stabilized in vacuum with dihedral angles (+72°, -154°) and (-72°, +151°) at the N- and C-terminals, respectively. Molecular dynamics (MD) simulation also showed that the peptide conformation having dihedral angles around (+75°, -150°) and (-75°, +150°) at the N- and C-terminals, respectively, was reasonably stable in water. Due to unique absence of the amide N-H, the peptide was ineffective in forming any intramolecular hydrogen bonding. MD investigation, however, revealed an intermolecular hydrogen bonding interaction with the water molecules, leading to its stability in aqueous solution. Metadynamics simulation analysis of the dipeptide in water also supported the PGII-PPII-like conformation at the N- and C-terminals, respectively, as the energetically stable conformation among the other possible combinations of conformations. The possible electronic transitions along with the HOMO-LUMO analysis further depicted the stability of the dipeptide in water and their possible absorption pattern. Time-dependent density functional theory (TDDFT) analysis showed strong negative rotatory strength of the dipeptide around 210 nm in water and acetonitrile, and it could be the source of experimentally observed high-amplitude negative absorption in the circular dichroism (CD) spectra around 200-203 nm. The very weak positive band (signature) in the region at ∼228 nm in CD spectra could also be correlated to the positive rotatory strength at 228 nm observed in ECD. To test the effect of such a dipeptide on a living cell, an MTT assay was performed and the result indicated no cytotoxic effect toward human hepatocellular carcinoma Hep G2 cancer cell lines.


Subject(s)
Dipeptides/chemistry , Proline/chemistry , Quantum Theory , Protein Conformation , Spectrum Analysis, Raman
20.
R Soc Open Sci ; 3(10): 160112, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27853536

ABSTRACT

Amyloid ß (Aß) peptide is present as a major component in amyloid plaque that is one of the hallmarks of Alzheimer's disease. The peptide contains a single tyrosine residue and Aß has a major implication in the pathology of the disease progression. Current investigation revealed that the tyrosine side chain attained two different critical stereo orientations in two dissimilar conformational states of the peptide. The extended α-helical structure of the peptide observed in an apolar solvent or methanol/water mixture became disordered in aqueous medium and the radius of gyration decreased. In aqueous medium, the torsional angle around Cα-Cß of tyrosine group became -60°. However, in its α-helical conformation in an apolar system, the measured angle was 180° and this rotameric state may be reasoned behind stronger tyrosine fluorescence compared with the disordered state of the peptide. Molecular dynamics simulation analyses and spectroscopic studies have helped us to understand the major structural changes in the secondary structure of the peptide in the two conformational states. A conformational clustering indicated that the compact state is more stable with tyrosine residue attaining the torsion angle value of -60°, whereas the native state (in HFIP/water mixture) is prevalent at a torsion angle value of -180°. High solvent accessibility has possibly stabilized the particular rotameric state (-60°) of the tyrosine residue and could be the reason behind decrease in fluorescence of the sole tyrosine residue in an aqueous buffer solution (pH 7.4) compared with its fluorescence in the α-helical structure in the micellar environment.

SELECTION OF CITATIONS
SEARCH DETAIL
...