Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(24): 65990-66001, 2023 May.
Article in English | MEDLINE | ID: mdl-37093374

ABSTRACT

In recent years, the use of probiotic bacteria has attracted the interest of the marine shrimp farming industry. However, there are certain limitations pertaining to the practical application of many commercially available probiotics. Here, a thoroughly screened optimal consortium of three indigenous sulfur probiotics was tested for antibiotic susceptibility and was found to be safe, with each culture being sensitive to all the tested antibiotics. Further, de-potash vinasse (DPV), an environmental hazard, was tested for its prebiotic potential, and its 1% (w/v) concentration was found to be effective for long-term viability (> 66 days) of the probiotic cultures and safe for Artemia. The synbiotic formulation was tested first in a lab-scale microcosm setup successfully and subsequently tried on a shrimp farm; it was observed that the product was congruent to the efficiency of a commercial probiotic regarding almost all physicochemical parameters, sulfide, nitrate-N, nitrite-N, phytoplankton sustenance, Pseudomonas count, coliform count, and heterotrophic count. In addition, it was significantly efficient in maintaining pH, reducing ammonia-N and phosphate-P, Vibrio and Aeromonas count, and a net increase in the yield of shrimp biomass by 625 kg, thus proving to be a better alternative than one of the already available remediation methods.


Subject(s)
Penaeidae , Probiotics , Synbiotics , Vibrio , Animals , Water , Ponds , Penaeidae/microbiology
2.
Front Plant Sci ; 8: 1541, 2017.
Article in English | MEDLINE | ID: mdl-28936217

ABSTRACT

Aim: Many countries import potassic fertilizers due to dearth of K-mineral deposits. Therefore processes to obtain K-nutrient sources from sea bittern were developed by our Institute. The present investigation evaluated the fertilizer potential of three different sea bittern-derived (SBD) potassium forms developed viz., potassium schoenite, potassium nitrate and potassium ammonium sulfate on maize productivity in two cropping seasons. Methods: The pot and field experiments consisted of four treatments, wherein the three K forms were applied at the recommended rate of 40 kg K2O ha-1 and were compared with commercially used sulfate of potash. The effect of these fertilizers on different parameters of plant and soil were evaluated. Results: The application of SBD-potassic fertilizers led to enhancement in growth, productivity and quality of maize which related well with higher photosynthesis, nutrient uptake and soil quality parameters. On an average all the three forms of sea bittern-derived potash enhanced yield of maize over control by 22.3 and 23.8%, respectively, in pot and field trials. The best performance was under SBD-KNO3, which also recorded the highest benefit: cost ratio of 1.76. Conclusion: The K-fertilizers derived from sea-bittern-a waste product of salt industry-can thus be economically used to improve crop production sustainably.

3.
J Hazard Mater ; 340: 189-201, 2017 Oct 15.
Article in English | MEDLINE | ID: mdl-28715742

ABSTRACT

This study aims at developing supercapacitor materials from sugar and distillery industry wastes, thereby mediating waste disposal problem through reuse. In a two-step process, biomethanated spent wash (BMSW) was acid treated to produce solid waste sludge and waste water with significantly reduced total organic carbon (TOC) and biological oxygen demand (BOD) content. Further, waste sludge was directly calcined in presence of activating agent ZnCl2 in inert atmosphere resulting in high surface area (730-900m2g-1) carbon of unique hexagonal morphology. Present technique resulted in achieving two-faceted target of liquid-solid waste remediation and production of high-performance carbon material. The resulted high surface area carbon was tested in both three and two electrode systems. Electrochemical tests viz. cyclic voltammetry, galvanostatic charge-discharge and impedance measurement were carried out in aqueous KOH electrolyte yielding specific capacitance as high as 120Fg-1, whereas all solid supercapacitor devised using PVA/H3PO4 polyelectrolyte showed stable capacitance of 105Fg-1 at 0.2Ag-1. The presence of transition metal particles and hetero-atoms on carbon surface were confirmed by XPS, EDX and TEM analysis which enhanced the conductivity and imparted pseudocapacitance to some extent into the working electrode. The present study successfully demonstrated production of high-performance electrode material from dirtiest wastewater making process green, sustainable and economically viable.


Subject(s)
Electric Capacitance , Industrial Waste , Sugars , Biological Oxygen Demand Analysis , Carbon/chemistry , Chlorides/chemistry , Electrodes , Waste Disposal, Fluid , Wastewater , Water Pollutants, Chemical/chemistry , Zinc Compounds/chemistry
4.
Bioresour Technol ; 103(1): 180-5, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22050835

ABSTRACT

The present study describes production of bio-ethanol from fresh red alga, Kappaphycus alvarezii. It was crushed to expel sap--a biofertilizer--while residual biomass was saccharified at 100 °C in 0.9 N H2SO4. The hydrolysate was repeatedly treated with additional granules to achieve desired reducing sugar concentration. The best yields for saccharification, inclusive of sugar loss in residue, were 26.2% and 30.6% (w/w) at laboratory (250 g) and bench (16 kg) scales, respectively. The hydrolysate was neutralized with lime and the filtrate was desalted by electrodialysis. Saccharomyces cerevisiae (NCIM 3523) was used for ethanol production from this non-traditional bio-resource. Fermentation at laboratory and bench scales converted ca. 80% of reducing sugar into ethanol in near quantitative selectivity. A petrol vehicle was successfully run with E10 gasoline made from the seaweed-based ethanol. Co-production of ethanol and bio-fertilizer from this seaweed may emerge as a promising alternative to land-based bio-ethanol.


Subject(s)
Biofuels/analysis , Ethanol/metabolism , Rhodophyta/metabolism , Acids/chemistry , Carbohydrate Metabolism , Dialysis , Electricity , Fermentation , Hydrolysis
SELECTION OF CITATIONS
SEARCH DETAIL
...