Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 71
Filter
Add more filters










Publication year range
1.
J Phys Chem B ; 128(20): 4975-4985, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38743687

ABSTRACT

The primary event in chemical neurotransmission involves the fusion of a membrane-limited vesicle at the plasma membrane and the subsequent release of its chemical neurotransmitter cargo. The cargo itself is not known to have any effect on the fusion event. However, amphiphilic monoamine neurotransmitters (e.g., serotonin and dopamine) are known to strongly interact with lipid bilayers and to affect their mechanical properties, which can in principle impact membrane-mediated processes. Here, we probe whether serotonin can enhance the association and fusion of artificial lipid vesicles in vitro. We employ fluorescence correlation spectroscopy and total internal reflection fluorescence microscopy to measure the attachment and fusion of vesicles whose lipid compositions mimic the major lipid components of synaptic vesicles. We find that the association between vesicles and supported lipid bilayers is strongly enhanced in a serotonin dose-dependent manner, and this drives an increase in the rate of spontaneous fusion. Molecular dynamics simulations and fluorescence spectroscopy data show that serotonin insertion increases the water content of the hydrophobic part of the bilayer. This suggests that the enhanced membrane association is likely driven by an energetically favorable drying transition. Other monoamines, such as dopamine and norepinephrine, but not other related species, such as tryptophan, show similar effects on membrane association. Our results reveal a lipid bilayer-mediated mechanism by which monoamines can themselves modulate vesicle fusion, potentially adding to the control toolbox for the tightly regulated process of neurotransmission in vivo.


Subject(s)
Lipid Bilayers , Molecular Dynamics Simulation , Serotonin , Lipid Bilayers/chemistry , Lipid Bilayers/metabolism , Serotonin/chemistry , Serotonin/metabolism , Membrane Fusion , Synaptic Vesicles/metabolism , Synaptic Vesicles/chemistry , Spectrometry, Fluorescence , Hydrophobic and Hydrophilic Interactions
2.
Adv Mater ; 36(23): e2312898, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38456771

ABSTRACT

The sheet-like lipid bilayer is the fundamental structural component of all cell membranes. Its building blocks are phospholipids and cholesterol. Their amphiphilic structure spontaneously leads to the formation of a bilayer in aqueous environment. Lipids are not just structural elements. Individual lipid species, the lipid membrane structure, and lipid dynamics influence and regulate membrane protein function. An exciting field is emerging where the membrane-associated material properties of different bilayer systems are used in designing innovative solutions for widespread applications across various fields, such as the food industry, cosmetics, nano- and biomedicine, drug storage and delivery, biotechnology, nano- and biosensors, and computing. Here, the authors summarize what is known about how lipids determine the properties and functions of biological membranes and how this has been or can be translated into innovative applications. Based on recent progress in the understanding of membrane structure, dynamics, and physical properties, a perspective is provided on how membrane-controlled regulation of protein functions can extend current applications and even offer new applications.


Subject(s)
Lipid Bilayers , Phospholipids , Phospholipids/chemistry , Lipid Bilayers/chemistry , Humans , Cell Membrane/chemistry , Cell Membrane/metabolism , Animals , Membrane Proteins/chemistry , Membrane Proteins/metabolism
3.
ACS Chem Neurosci ; 15(6): 1265-1275, 2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38421952

ABSTRACT

Alzheimer's disease (AD) is associated with the aggregation of amyloid ß (Aß) and tau proteins. Why ApoE variants are significant genetic risk factors remains a major unsolved puzzle in understanding AD, although intracellular interactions with ApoE are suspected to play a role. Here, we show that specific changes in the fluorescence lifetime of fluorescently tagged small Aß oligomers in rat brain cells correlate with the cellular ApoE content. An inhibitor of the Aß-ApoE interaction suppresses these changes and concomitantly reduces Aß toxicity in a dose-dependent manner. Single-molecule techniques show changes both in the conformation and in the stoichiometry of the oligomers. Neural stem cells derived from hiPSCs of Alzheimer's patients also exhibit these fluorescence lifetime changes. We infer that intracellular interaction with ApoE modifies the N-terminus of the Aß oligomers, inducing changes in their stoichiometry, membrane affinity, and toxicity. These changes can be directly imaged in live cells and can potentially be used as a rapid and quantitative cellular assay for AD drug discovery.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Humans , Rats , Animals , Amyloid beta-Peptides/metabolism , Apolipoproteins E/genetics , Apolipoproteins E/metabolism , Alzheimer Disease/metabolism , Brain/metabolism , tau Proteins/metabolism
4.
J Phys Chem Lett ; 15(6): 1711-1718, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38319949

ABSTRACT

The structure and dynamics of the lipid membrane can affect the activity of membrane proteins. Therefore, small lipophilic molecules that alter membrane properties (such as the neurotransmitter serotonin) can potentially modulate receptor activity without binding to the receptor. Here, we investigated how the activity of neuropeptide Y type 4 receptor (Y4R, reconstituted in lipid bicelles) is modulated by serotonin, which has no known interaction with Y4R. We found a serotonin-concentration-dependent decrease (down to 0.1 mM of serotonin) in the ligand affinity of Y4R. This effect correlates with a serotonin-induced reduction of the resistance of the bilayer to indentation (measured by atomic force microscopy) and bilayer thickness (measured by solid state NMR) in two different types of zwitterionic lipid bicelles. Our findings indicate a "membrane-mediated allosteric effect" of serotonin on the activation of Y4R and suggest the potential for developing pharmacophores, which can modulate cellular signaling without directly interacting with any receptor.


Subject(s)
Receptors, G-Protein-Coupled , Serotonin , Receptors, Neuropeptide Y/metabolism , Membrane Proteins/chemistry , Lipids , Lipid Bilayers/chemistry
7.
J Phys Chem Lett ; 14(40): 9060-9068, 2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37782899

ABSTRACT

Liquid-liquid phase separation (LLPS) plays a crucial role in cellular organization, primarily driven by intrinsically disordered proteins (IDPs) leading to the formation of biomolecular condensates. A folded protein SUMO that post-translationally modifies cellular proteins has recently emerged as a regulator of LLPS. Given its compact structure and limited flexibility, the precise role of SUMO in condensate formation remains to be investigated. Here, we show the rapid phase separation of SUMO1 into micrometer-sized liquid-like condensates in inert crowders under physiological conditions. Subsequent time-dependent conformational changes and aggregation are probed by label-free methods (tryptophan fluorescence and Raman spectroscopy). Remarkably, experiments on a SUMO1 variant lacking the N-terminal disordered region further corroborate the role of its structured part in phase transitions. Our findings highlight the potential of folded proteins to engage in LLPS and emphasize further investigation into the influence of the SUMO tag on IDPs associated with membrane-less assemblies in cells.


Subject(s)
Intrinsically Disordered Proteins , SUMO-1 Protein , Intrinsically Disordered Proteins/chemistry , Tryptophan , Ubiquitins , SUMO-1 Protein/chemistry
8.
J Phys Chem B ; 127(9): 1947-1955, 2023 03 09.
Article in English | MEDLINE | ID: mdl-36795947

ABSTRACT

Nature confines hundreds of millimolar of amphiphilic neurotransmitters, such as serotonin, in synaptic vesicles. This appears to be a puzzle, as the mechanical properties of lipid bilayer membranes of individual major polar lipid constituents of synaptic vesicles [phosphatidylcholine (PC), phosphatidylethanolamine (PE), and phosphatidylserine (PS)] are significantly affected by serotonin, sometimes even at few millimolar concentrations. These properties are measured by atomic force microscopy, and their results are corroborated by molecular dynamics simulations. Complementary 2H solid-state NMR measurements also show that the lipid acyl chain order parameters are strongly affected by serotonin. The resolution of the puzzle lies in the remarkably different properties displayed by the mixture of these lipids, at molar ratios mimicking those of natural vesicles (PC:PE:PS:Cholesterol = 3:5:2:5). Bilayers constituting of these lipids are minimally perturbed by serotonin, and show only a graded response at physiological concentrations (>100 mM). Significantly, the cholesterol (up to 33% molar ratio) plays only a minor role in dictating these mechanical perturbations, with PC:PE:PS:Cholesterol = 3:5:2:5 and 3:5:2:0 showing similar perturbations. We infer that nature uses an emergent mechanical property of a specific mixture of lipids, all individually vulnerable to serotonin, to appropriately respond to physiological serotonin levels.


Subject(s)
Phosphatidylethanolamines , Serotonin , Phosphatidylethanolamines/chemistry , Lipid Bilayers/chemistry , Phosphatidylcholines/chemistry , Phosphatidylserines/chemistry , Cholesterol/chemistry , Phospholipids/chemistry
9.
Biophys J ; 122(6): 964-972, 2023 03 21.
Article in English | MEDLINE | ID: mdl-36004780

ABSTRACT

"Membrane order" is a term commonly used to describe the elastic and mechanical properties of the lipid bilayer, though its exact meaning is somewhat context- and method dependent. These mechanical properties of the membrane control many cellular functions and are measured using various biophysical techniques. Here, we ask if the results obtained from various techniques are mutually consistent. Such consistency cannot be assumed a priori because these techniques probe different spatial locations and different spatial and temporal scales. We evaluate the change of membrane order induced by serotonin using nine different techniques in lipid bilayers of three different compositions. Serotonin is an important neurotransmitter present at 100s of mM concentrations in neurotransmitter vesicles, and therefore its interaction with the lipid bilayer is biologically relevant. Our measurement tools include fluorescence of lipophilic dyes (Nile Red, Laurdan, TMA-DPH, DPH), whose properties are a function of membrane order; atomic force spectroscopy, which provides a measure of the force required to indent the lipid bilayer; 2H solid-state NMR spectroscopy, which measures the molecular order of the lipid acyl chain segments; fluorescence correlation spectroscopy, which provides a measure of the diffusivity of the probe in the membrane; and Raman spectroscopy, where spectral intensity ratios are affected by acyl chain order. We find that different measures often do not correlate with each other and sometimes even yield conflicting results. We conclude that no probe provides a general measure of membrane order and that any inference based on the change of membrane order measured by a particular probe may be unreliable.


Subject(s)
Lipid Bilayers , Membrane Lipids , Membrane Lipids/physiology , Spectrum Analysis/standards , Microscopy, Atomic Force
10.
Methods Appl Fluoresc ; 10(4)2022 Aug 24.
Article in English | MEDLINE | ID: mdl-35940167

ABSTRACT

Small lipid vesicles (with diameter ≤100 nm) with their highly curved membranes comprise a special class of biological lipid bilayers. The mechanical properties of such membranes are critical for their function, e.g. exocytosis. Cholesterol is a near-universal regulator of membrane properties in animal cells. Yet measurements of the effect of cholesterol on the mechanical properties of membranes have remained challenging, and the interpretation of such measurements has remained a matter of debate. Here we show that nanosecond fluorescence correlation spectroscopy (FCS) can directly measure the ns-microsecond rotational correlation time (τr) of a lipid probe in high curvature vesicles with extraordinary sensitivity. Using a home-built 4-Pi fluorescence cross-correlation spectrometer containing polarization-modulating elements, we measure the rotational correlation time (τr) of Nile Red in neurotransmitter vesicle mimics. As the cholesterol mole fraction increases from 0 to 50%,τrincreases from 17 ± 1 to 112 ± 12 ns, indicating a viscosity change of nearly a factor of 7. These measurements are corroborated by solid-state NMR results, which show that the order parameter of the lipid acyl chains increases by about 50% for the same change in cholesterol concentration. Additionally, we measured the spectral parameters of polarity-sensitive fluorescence dyes, which provide an indirect measure of viscosity. The green/red ratio of Nile Red and the generalized polarization of Laurdan show consistent increases of 1.3× and 2.6×, respectively. Our results demonstrate that rotational FCS can directly measure the viscosity of highly curved membranes with higher sensitivity and a wider dynamic range compared to other conventional techniques. Significantly, we observe that the viscosity of neurotransmitter vesicle mimics is remarkably sensitive to their cholesterol content.


Subject(s)
Cholesterol , Lipid Bilayers , Animals , Cholesterol/chemistry , Fluorescence Polarization , Lipid Bilayers/chemistry , Spectrometry, Fluorescence , Viscosity
11.
Methods Mol Biol ; 2538: 35-54, 2022.
Article in English | MEDLINE | ID: mdl-35951292

ABSTRACT

Bacterial amyloids decorate the cell surface of many bacteria by forming functional amyloid fibers. These amyloids have structural and biochemical similarities with many disease-related amyloids in eukaryotes. Amyloid aggregation starts at the individual monomer level, and the end product is the amyloid fibril. The process of amyloid aggregation involves a continuous increase of the aggregate size, and therefore size is a critical parameter to measure in aggregation experiments. Also, our understanding of the aggregation process, and our ability to design interventions, can benefit from a measurement of the conformational dynamics of proteins undergoing aggregation. Fluorescence correlation spectroscopy (FCS) is perhaps the most sensitive and rapid technique available currently for this purpose. It can measure the average size and the size distribution of molecules and aggregates down to sub-nm length scales and can also measure fast nanosecond time-scale conformational dynamics, all in an equilibrium solution. FCS achieves this by measuring the fluorescence intensity fluctuations of freely diffusing protein molecules in an optically defined microscopic probe volume in a solution. Here, we present a set of instructions for effectively measuring the size and dynamics of amyloid aggregates with FCS.


Subject(s)
Amyloid , Amyloidogenic Proteins , Amyloid/chemistry , Amyloid beta-Peptides/chemistry , Diffusion , Protein Aggregates , Spectrometry, Fluorescence/methods
12.
Methods Mol Biol ; 2538: 55-74, 2022.
Article in English | MEDLINE | ID: mdl-35951293

ABSTRACT

Small oligomers are the initial intermediates in the pathway to amyloid fibril formation. They have a distinct identity from the monomers as well as from the protofibrils and the fibrils, both in their structure and in their properties. In many cases, they play a crucial biological role. However, due to their transient nature, they are difficult to characterize. "Oligomer" is a diffuse definition, encompassing aggregates of many different sizes, and this lack of precise definition causes much confusion and disagreement between different research groups. Here, we define the small oligomers as "n"-mers with n < 10, which is the size range in which the amyloid proteins typically exist at the initial phase of the aggregation process. Since the oligomers dynamically interconvert into each other, a solution of aggregating amyloid proteins will contain a distribution of sizes. A precise characterization of an oligomeric solution will, therefore, require quantification of the relative population of each size. Size-based separation methods, such as size-exclusion chromatography, are typically used to characterize this distribution. However, if the interconversion between oligomers of different sizes is fast, this would not yield reliable results. Single-molecule photobleaching (smPB) is a direct method to evaluate this size distribution in a heterogeneous solution without separation. In addition, understanding the mechanism of action of amyloid oligomers requires knowing the affinity of each oligomer type to different cellular components, such as the cell membrane. These measurements are also amenable to smPB. Here we show how to perform smPB, both for oligomers in solution and for oligomers attached to the membrane.


Subject(s)
Amyloid , Amyloidogenic Proteins , Amyloid/chemistry , Amyloid beta-Peptides/metabolism , Photobleaching
13.
Biochimie ; 203: 40-50, 2022 Dec.
Article in English | MEDLINE | ID: mdl-35447219

ABSTRACT

Serotonin is an endogenous neurotransmitter involved in both physiological and pathophysiological processes. Traditionally, serotonin acts as a ligand for G protein-coupled receptors (GPCRs) leading to subsequent cell signaling. However, serotonin can also bind to lipid membranes with high affinity and modulate the phase behavior in 1-palmitoyl-2-oleoyl-glycero-3-phosphocholine (POPC)/N-palmitoyl-D-erythro-sphingosylphosphorylcholine (PSM)/cholesterol model membranes mimicking the outer leaflet of the plasma membrane. Here, we investigated if serotonergic drugs containing the pharmacophore from serotonin would also modulate phase behavior in lipid membranes in a similar fashion. We used 2H NMR spectroscopy to explore the phase behavior of POPC/PSM/cholesterol (4/4/2 molar ratio) mixtures in the presence of the serotonergic drugs aripiprazole, BRL-54443, BW-723C86, and CP-135807 at a lipid to drug molar ratio of 10:1. POPC and PSM were perdeuterated in the palmitoyl chain, respectively, and prepared in individual samples. Numerical lineshape simulations of the 2H NMR spectra were used to calculate the order parameter profiles and projected lengths of the saturated acyl chains. All serotonergic drugs induce two components in 2H NMR spectra, indicating that they increased the hydrophobic mismatch between the thickness of the coexisting lipid phases leading to larger domain sizes, relatively similarly to serotonin. AFM force indentation and Raman spectral studies, which interrogate membrane mechanical properties, also indicate changes in membrane order in the presence of these drugs. These findings highlight how serotonergic drugs alter membrane phase behavior and could modulate both target and other membrane proteins, possibly explaining the side effects observed for serotonergic and other clinically relevant drugs.


Subject(s)
Lipid Bilayers , Serotonin , Lipid Bilayers/chemistry , Cholesterol/chemistry , Magnetic Resonance Spectroscopy , Serotonin Agents , Phosphatidylcholines/chemistry
14.
J Phys Chem B ; 126(5): 1016-1023, 2022 02 10.
Article in English | MEDLINE | ID: mdl-35104126

ABSTRACT

Ordered membrane domains are thought to influence the attachment and insertion of toxic amyloid oligomers, and consequently, their toxicity. However, if and how the molecular aspects of this interaction depend on the membrane order is poorly understood. Here we measure the affinity, location, and degree of insertion of the small oligomers of hIAPP (human Islet Amyloid Polypeptide, associated with Type II diabetes) at near-physiological concentrations to adjacent domains of a biphasic lipid bilayer. Using simultaneous atomic force, confocal and fluorescence lifetime microscopy (AFM-FLIM), we find that hIAPP oligomers have a nearly 8-fold higher affinity to the disordered domains over the ordered domains. To probe whether this difference indicates different modes of interaction, we measure the change of lifetime of peptide-attached fluorescent labels induced by soluble fluorescence quenchers and also measure the kinetics of localized photobleaching. We find that in the raft-like ordered domains, the oligomers primarily lie on the aqueous interface with limited membrane penetration. However, in the neighboring disordered domains, their C-termini penetrate deeper into the lipid bilayer. We conclude that local membrane order determines not only the affinity but also the mode of interaction of amyloid oligomers, which may have significant implications for disease mechanisms.


Subject(s)
Diabetes Mellitus, Type 2 , Islet Amyloid Polypeptide , Amyloid/chemistry , Humans , Islet Amyloid Polypeptide/chemistry , Lipid Bilayers/chemistry , Membranes
15.
Front Mol Biosci ; 8: 745313, 2021.
Article in English | MEDLINE | ID: mdl-34926574

ABSTRACT

An important measure of the conformation of protein molecules is the degree of surface exposure of its specific segments. However, this is hard to measure at the level of individual molecules. Here, we combine single molecule photobleaching (smPB, which resolves individual photobleaching steps of single molecules) and fluorescence quenching techniques to measure the accessibility of individual fluorescently labeled protein molecules to quencher molecules in solution. A quencher can reduce the time a fluorophore spends in the excited state, increasing its photostability under continuous irradiation. Consequently, the photo-bleaching step length would increase, providing a measure for the accessibility of the fluorophore to the solvent. We demonstrate the method by measuring the bleaching step-length increase in a lipid, and also in a lipid-anchored peptide (both labelled with rhodamine-B and attached to supported lipid bilayers). The fluorophores in both molecules are expected to be solvent-exposed. They show a near two-fold increase in the step length upon incubation with 5 mM tryptophan (a quencher of rhodamine-B), validating our approach. A population distribution plot of step lengths before and after addition of tryptophan show that the increase is not always homogenous. Indeed there are different species present with differential levels of exposure. We then apply this technique to determine the solvent exposure of membrane-attached N-terminus labelled amylin (h-IAPP, an amyloid associated with Type II diabetes) whose interaction with lipid bilayers is poorly understood. hIAPP shows a much smaller increase of the step length, signifying a lower level of solvent exposure of its N-terminus. Analysis of results from individual molecules and step length distribution reveal that there are at least two different conformers of amylin in the lipid bilayer. Our results show that our method ("Q-SLIP", Quenching-induced Step Length increase in Photobleaching) provides a simple route to probe the conformational states of membrane proteins at a single molecule level.

16.
Biomolecules ; 11(12)2021 12 09.
Article in English | MEDLINE | ID: mdl-34944492

ABSTRACT

Amyloid ß (Aß) is a peptide known to form amyloid fibrils in the brain of patients suffering from Alzheimer's disease. A complete mechanistic understanding how Aß peptides form neurotoxic assemblies and how they kill neurons has not yet been achieved. Previous analysis of various Aß40 mutants could reveal the significant importance of the hydrophobic contact between the residues Phe19 and Leu34 for cell toxicity. For some mutations at Phe19, toxicity was completely abolished. In the current study, we assessed if perturbations introduced by mutations in the direct proximity of the Phe19/Leu34 contact would have similar relevance for the fibrillation kinetics, structure, dynamics and toxicity of the Aß assemblies. To this end, we rationally modified positions Phe20 or Gly33. A small library of Aß40 peptides with Phe20 mutated to Lys, Tyr or the non-proteinogenic cyclohexylalanine (Cha) or Gly33 mutated to Ala was synthesized. We used electron microscopy, circular dichroism, X-ray diffraction, solid-state NMR spectroscopy, ThT fluorescence and MTT cell toxicity assays to comprehensively investigate the physicochemical properties of the Aß fibrils formed by the modified peptides as well as toxicity to a neuronal cell line. Single mutations of either Phe20 or Gly33 led to relatively drastic alterations in the Aß fibrillation kinetics but left the global, as well as the local structure, of the fibrils largely unchanged. Furthermore, the introduced perturbations caused a severe decrease or loss of cell toxicity compared to wildtype Aß40. We suggest that perturbations at position Phe20 and Gly33 affect the fibrillation pathway of Aß40 and, thereby, influence the especially toxic oligomeric species manifesting so that the region around the Phe19/Leu34 hydrophobic contact provides a promising site for the design of small molecules interfering with the Aß fibrillation pathway.


Subject(s)
Amyloid beta-Peptides/chemistry , Mutation , Amyloid beta-Peptides/genetics , Amyloid beta-Peptides/toxicity , Cell Line , Circular Dichroism , Humans , Hydrophobic and Hydrophilic Interactions , Leucine/genetics , Models, Molecular , Phenylalanine/genetics , Protein Structure, Secondary , X-Ray Diffraction
17.
J Phys Chem B ; 125(45): 12426-12435, 2021 11 18.
Article in English | MEDLINE | ID: mdl-34748334

ABSTRACT

Transient oligomeric intermediates in the peptide or protein aggregation pathway are suspected to be the key toxic species in many amyloid diseases, but deciphering their molecular nature has remained a challenge. Here we show that the strategy of "double-mutant cycles", used effectively in probing protein-folding intermediates, can reveal transient interactions during protein aggregation. It does so by comparing the changes in thermodynamic parameters between the wild type, and single and double mutants. We demonstrate the strategy by probing the possible transient salt bridge partner of lysine 28 (K28) in the oligomeric states of amyloid ß-40 (Aß40), the putative toxic species in Alzheimer's disease. In mature fibrils, the binding partner is aspartate 23. This interaction differentiates Aß40 from the more toxic Aß42, where K28's binding partner is the C-terminal carboxylate. We selectively acetylated K28 and amidated the C-terminus of Aß40, creating four distinct variants. Spectroscopic measurements of the kinetics and thermodynamics of aggregation show that K28 and the C-terminus interact transiently in the early phases of the Aß40 aggregation pathway. Hydrogen-deuterium exchange mass spectrometry (using a simple analysis method that we introduce here that takes into account the isotopic mass distribution) supports this interpretation. It is also supported by cellular toxicity measurements, suggesting possible similarities in the mechanisms of toxicity of Aß40 oligomers (which are more toxic than Aß40 fibrils) and Aß42. Our results show that double-mutant cycles can be a powerful tool for probing transient interactions during protein aggregation.


Subject(s)
Alzheimer Disease , Amyloid beta-Peptides , Amyloid beta-Peptides/genetics , Humans , Peptide Fragments/genetics , Protein Aggregates , Protein Folding
18.
J Am Chem Soc ; 143(44): 18766-18776, 2021 11 10.
Article in English | MEDLINE | ID: mdl-34724378

ABSTRACT

Protein-folding can go wrong in vivo and in vitro, with significant consequences for the living organism and the pharmaceutical industry, respectively. Here we propose a design principle for small-peptide-based protein-specific folding modifiers. The principle is based on constructing a "xenonucleus", which is a prefolded peptide that mimics the folding nucleus of a protein. Using stopped-flow kinetics, NMR spectroscopy, Förster resonance energy transfer, single-molecule force measurements, and molecular dynamics simulations, we demonstrate that a xenonucleus can make the refolding of ubiquitin faster by 33 ± 5%, while variants of the same peptide have little or no effect. Our approach provides a novel method for constructing specific, genetically encodable folding catalysts for suitable proteins that have a well-defined contiguous folding nucleus.


Subject(s)
Ubiquitin/chemistry , Models, Molecular , Protein Conformation , Protein Folding , Ubiquitin/metabolism
19.
Biophys J ; 120(14): 2785-2792, 2021 07 20.
Article in English | MEDLINE | ID: mdl-34214538

ABSTRACT

The entry of the severe acute respiratory syndrome coronavirus 2 virus in human cells is mediated by the binding of its surface spike protein to the human angiotensin-converting enzyme 2 (ACE2) receptor. A 23-residue long helical segment (SBP1) at the binding interface of human ACE2 interacts with viral spike protein and therefore has generated considerable interest as a recognition element for virus detection. Unfortunately, emerging reports indicate that the affinity of SBP1 to the receptor-binding domain of the spike protein is much lower than that of the ACE2 receptor itself. Here, we examine the biophysical properties of SBP1 to reveal factors leading to its low affinity for the spike protein. Whereas SBP1 shows good solubility (solubility > 0.8 mM), circular dichroism spectroscopy shows that it is mostly disordered with some antiparallel ß-sheet content and no helicity. The helicity is substantial (>20%) only upon adding high concentrations (≥20% v/v) of 2,2,2-trifluoroethanol, a helix promoter. Fluorescence correlation spectroscopy and single-molecule photobleaching studies show that the peptide oligomerizes at concentrations >50 nM. We hypothesized that mutating the hydrophobic residues (F28, F32, and F40) of SBP1, which do not directly interact with the spike protein, to alanine would reduce peptide oligomerization without affecting its spike binding affinity. Whereas the mutant peptide (SBP1mod) shows substantially reduced oligomerization propensity, it does not show improved helicity. Our study shows that the failure of efforts, so far, to produce a short SBP1 mimic with a high affinity for the spike protein is not only due to the lack of helicity but is also due to the heretofore unrecognized problem of oligomerization.


Subject(s)
COVID-19 , Peptidyl-Dipeptidase A , Angiotensin-Converting Enzyme 2 , Humans , Peptidyl-Dipeptidase A/genetics , Peptidyl-Dipeptidase A/metabolism , Protein Binding , SARS-CoV-2 , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...