Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Faraday Discuss ; 192: 545-560, 2016 10 20.
Article in English | MEDLINE | ID: mdl-27472155

ABSTRACT

We report experimental measurements of the dissolution rate of several carbonate minerals in CO2-saturated water or brine at temperatures between 323 K and 373 K and at pressures up to 15 MPa. The dissolution kinetics of pure calcite were studied in CO2-saturated NaCl brines with molalities of up to 5 mol kg-1. The results of these experiments were found to depend only weakly on the brine molality and to conform reasonably well with a kinetic model involving two parallel first-order reactions: one involving reactions with protons and the other involving reaction with carbonic acid. The dissolution rates of dolomite and magnesite were studied in both aqueous HCl solution and in CO2-saturated water. For these minerals, the dissolution rates could be explained by a simpler kinetic model involving only direct reaction between protons and the mineral surface. Finally, the rates of dissolution of two carbonate-reservoir analogue minerals (Ketton limestone and North-Sea chalk) in CO2-saturated water were found to follow the same kinetics as found for pure calcite. Vertical scanning interferometry was used to study the surface morphology of unreacted and reacted samples. The results of the present study may find application in reactive-flow simulations of CO2-injection into carbonate-mineral saline aquifers.

2.
Biotechnol Bioeng ; 112(12): 2429-38, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26041472

ABSTRACT

This paper investigates the scaling-up of cyanobacterial biomass cultivation and biohydrogen production from laboratory to industrial scale. Two main aspects are investigated and presented, which to the best of our knowledge have never been addressed, namely the construction of an accurate dynamic model to simulate cyanobacterial photo-heterotrophic growth and biohydrogen production and the prediction of the maximum biomass and hydrogen production in different scales of photobioreactors. To achieve the current goals, experimental data obtained from a laboratory experimental setup are fitted by a dynamic model. Based on the current model, two key original findings are made in this work. First, it is found that selecting low-chlorophyll mutants is an efficient way to increase both biomass concentration and hydrogen production particularly in a large scale photobioreactor. Second, the current work proposes that the width of industrial scale photobioreactors should not exceed 0.20 m for biomass cultivation and 0.05 m for biohydrogen production, as severe light attenuation can be induced in the reactor beyond this threshold.


Subject(s)
Cyanobacteria/growth & development , Cyanobacteria/metabolism , Hydrogen/metabolism , Photobioreactors/microbiology , Biomass , Models, Theoretical
3.
Soft Matter ; 11(2): 222-36, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25435312

ABSTRACT

Smectite clay minerals and their suspensions have long been of both great scientific and applications interest and continue to display a remarkable range of new and interesting behaviour. Recently there has been an increasing interest in the properties of mixed suspensions of such clays with nanoparticles of different size, shape and charge. This review aims to summarize the current status of research in this area focusing on phase behaviour and rheological properties. We will emphasize the rich range of data that has emerged for these systems and the challenges they present for future investigations. The review starts with a brief overview of the behaviour and current understanding of pure smectite clays and their suspensions. We then cover the work on smectite clay-inorganic nanoparticle mixed suspensions according to the shape and charge of the nanoparticles - spheres, rods and plates either positively or negatively charged. We conclude with a summary of the overarching trends that emerge from these studies and indicate where gaps in our understanding need further research for better understanding the underlying chemistry and physics.

4.
J Phys Chem B ; 118(49): 14461-78, 2014 Dec 11.
Article in English | MEDLINE | ID: mdl-25406634

ABSTRACT

In this work we report phase equilibrium measurements on the system (methane + carbon dioxide + water) carried out with a high-pressure quasi-static-analytical apparatus. The measurements have been made under conditions of two-phase vapor-liquid equilibrium, three-phase vapor-liquid-liquid equilibrium (VLLE), and four-phase vapor-liquid-liquid-hydrate equilibrium. The compositions of three coexisting fluid phases have been obtained along eight isotherms at temperatures from (285.15 to 303.5) K and at pressures up to either the upper critical end point (UCEP) or up to the hydrate formation locus. Compositions of coexisting vapor and liquid phases have been obtained along three isotherms at temperatures from (323.15 to 423.15) K and pressures up to 20 MPa. The quadruple curve, along which hydrates coexist with the three fluid phases, was also measured along its entire length. The VLLE data obtained for this mixture have been compared with the predictions of the statistical associating fluid theory for potentials of variable range (SAFT-VR), implemented with the square-well potential and using parameters fitted to pure-component and binary-mixture data. Specifically, we used the SAFT-VR parameters reported by Míguez and co-workers [Míguez, J. M.; dos Ramos, M. C.; Piñeiro, M. M.; Blas, F. J. J. Phys. Chem. B 2011, 115, 9604]. The pressure along the quadruple curve was compared with the predictions of two different thermodynamic models. Furthermore, a detailed study of the ternary mixtures was carried out based on comparison with available ternary data of the type (CO2 + n-alkane + water) and available data for the constituent binary subsystems. In this way, we analyzed the observed effects on the solubility when the n-alkane component was changed or a third component was added.

5.
Phys Chem Chem Phys ; 15(26): 10783-94, 2013 Jul 14.
Article in English | MEDLINE | ID: mdl-23689756

ABSTRACT

The green alga Chlamydomonas reinhardtii has the ability to produce molecular hydrogen (H2), a clean and renewable fuel, through the biophotolysis of water under sulphur-deprived anaerobic conditions. The aim of this study was to advance the development of a practical and scalable biophotolytic H2 production process. Experiments were carried out using a purpose-built flat-plate photobioreactor, designed to facilitate green algal H2 production at the laboratory scale and equipped with a membrane-inlet mass spectrometry system to accurately measure H2 production rates in real time. The nutrient control method of sulphur deprivation was used to achieve spontaneous H2 production following algal growth. Sulphur dilution and sulphur feed techniques were used to extend algal lifetime in order to increase the duration of H2 production. The sulphur dilution technique proved effective at encouraging cyclic H2 production, resulting in alternating Chlamydomonas reinhardtii recovery and H2 production stages. The sulphur feed technique enabled photobioreactor operation in chemostat mode, resulting in a small improvement in H2 production duration. A conceptual design for a large-scale photobioreactor was proposed based on these experimental results. This photobioreactor has the capacity to enable continuous and economical H2 and biomass production using green algae. The success of these complementary approaches demonstrate that engineering advances can lead to improvements in the scalability and affordability of biophotolytic H2 production, giving increased confidence that H2 can fulfil its potential as a sustainable fuel of the future.


Subject(s)
Hydrogen/chemistry , Chlamydomonas reinhardtii/growth & development , Chlamydomonas reinhardtii/metabolism , Photobioreactors , Photolysis , Sulfur/chemistry , Sulfur/metabolism
6.
J Phys Chem B ; 117(18): 5647-52, 2013 May 09.
Article in English | MEDLINE | ID: mdl-23537183

ABSTRACT

Molecular dynamics simulations have been performed to study the interfacial tension of CO2 and brine for a range of temperatures between 303 and 393 K and pressures from 2 to 50 MPa. The ions involved in this study are Na(+), Ca(2+), and Cl(-). The results indicate that the interfacial tension decreases with increasing pressure under any temperature condition but increases linearly with the molality of the salt solution. The density profiles calculated from the MD simulation results also indicate a positive excess of CO2 and a negative excess of ions at the interface. The charge of the ions was found to have a larger influence than their size on the interfacial tension, a result that consistent with experimental findings.


Subject(s)
Carbon Dioxide/chemistry , Molecular Dynamics Simulation , Salts/chemistry , Temperature , Pressure
7.
Soft Matter ; 4(2): 337-348, 2008 Jan 22.
Article in English | MEDLINE | ID: mdl-32907248

ABSTRACT

We report the results of a comprehensive study of the rheological properties of a series of mixed colloid systems where the shape of one of the components has been varied systematically. Specifically we have measured the oscillatory, transient (creep) and continuous steady shear flow behaviour of a 2.5 wt% dispersion in water of a well-characterised hectorite clay modified by the addition of a series of aluminasol colloidal particles whose shape varies systematically from rod (boehmite) to platelet (gibbsite) to sphere (alumina-coated silica), all having essentially the same smallest dimension, which is similar to that of the hectorite. The particle characterisation and rheological properties of the pure components have recently been reported in Part I of this series (Soft Matter, 2007, 3, 1145). The mixtures show the same general behaviour as the pure systems, displaying a complex 'yield space' transition from an elastoviscous gel at low applied stresses to a viscous, weakly elastic, shear-thinning liquid at high stresses. The unifying theme of this work is that the addition of 0.25 wt% of the minor component in all cases results in dramatic enhancements to the dispersion rheological properties. At the same time the magnitude of this effect depends on the shape of the particles. Shear moduli, low stress viscosities and effective yield stresses all increase in the additive order rods < platelets < spheres, with enhancements for the latter being up to a factor of 500 and typically 20. At the same time the critical failure strains for the gels decreased in the same order - the strongest gels are also the most fragile in this sense. The physicochemical factors underlying this behaviour are discussed and a simple qualitative model described. While no complete explanation or model can be proposed at this stage, the study provides a quantitative model-system baseline for mixed colloidal dispersions already used for industrial applications (e.g. oilwell-drilling fluids) and suggests ways in which such fluids may be optimised and controlled.

8.
Soft Matter ; 3(9): 1145-1162, 2007 Aug 14.
Article in English | MEDLINE | ID: mdl-32900036

ABSTRACT

The flow behaviour and rheology of colloidal dispersions are of considerable interest in many applications, for example colloidal clay particles find applications in oilfield and construction-drilling fluids. The rheological properties of such fluids can be enhanced significantly by adding colloidal particles of different size and shape. To gain insight into the mechanism of this phenomenon, we have studied model mineral-colloid systems whose shape changes systematically from a plate-like aluminasol (gibbsite), through a lath-like smectite clay (hectorite), to a rod-like aluminasol (boehmite).The paper presents the results of a systematic and comprehensive multi-technique study (oscillatory, transient and steady shear) of the rheology of dispersions of these model systems. This gives a detailed account of the 'yield space' that characterises the complex transition of these soft materials from elastoviscous gels to viscoelastic liquids, and of the effect of particle size and shape on this behaviour. The observed phenomena are underpinned by two competing flow-mediated microstructural rearrangements that have significantly different timescales. A physical model invoking flow-mediated building and disruption of fluid structure is described to rationalise the observed behaviour. The study also forms the baseline to a companion study (part II), which investigates the rheological behaviour of mixed anisometric colloid systems based on these pure components.

9.
J Colloid Interface Sci ; 294(2): 466-72, 2006 Feb 15.
Article in English | MEDLINE | ID: mdl-16112125

ABSTRACT

The rheology of a complex, heterogeneous mineral colloid was rationalised using models devised for model rod systems. Mixing a calcium hydroxide slurry with an aluminium sulphate solution produces a suspension of rod-shaped ettringite particles. Ettringite rod suspensions exhibit non-Newtonian flow behaviour, which depends on the shape of the particles, their size distribution, concentration and surface properties as well as the suspension medium characteristics. We have measured the shear viscosity of suspensions of ettringite rods with a median aspect ratio, r(i) approximately 8, at 25 degrees C as a function of particle volume fraction, phi, in the range 0.0001-0.08. It was found that the viscosity of the suspensions increased with phi, and showed a marked change of slope at phi approximately 0.01, which we identified as the minimum overlap concentration phi(*). Above phi(*), the system is in the semi-dilute regime. At phi>phi(*), when Pe(rot)>1, hydrodynamic interactions between rods become increasingly significant, and we observe shear-thinning behaviour. The high effective hydrodynamic volume of rotating rods, resulting in much lower values of the maximum packing fraction, phi(c), than for spheres, dominates the rheological behaviour of ettringite suspensions.

SELECTION OF CITATIONS
SEARCH DETAIL
...