Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Magn Reson Chem ; 62(1): 19-27, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37994184

ABSTRACT

In NMR experiments, it is crucial to control the temperature of the sample, especially when measuring kinetic parameters. Usually, it takes 2 to 5 min for the temperature of the sample inside the NMR probe to stabilize at a fixed value set for the experiment. However, the NMR sample tubes are flame-sealed in some cases, such as when working with volatile solvents, atmosphere-sensitive samples, or calibration samples for long-term use. When these samples are placed inside the NMR probe, the spectrometer controls the lower portion (liquid phase) of the NMR sample tube with a gas flow at a fixed temperature, while the upper portion (vapor) is at ambient temperature. This probe design creates a unique temperature gradient across the sample, leading to vapor pressure build-up, particularly inside a sealed NMR tube. By analyzing the temperature-dependent spectral line shape changes of a chemical exchange process, we report that under standard experimental conditions, the sample temperature can take up to 2 to 3 h (instead of minutes) to stabilize. The time scale of the liquid-vapor equilibrium process is much slower, with a half-life exceeding 35 min, in contrast to the 2-min duration required to obtain each spectrum. This phenomenon is exclusively due to the liquid-vapor equilibrium process of the flame-sealed NMR tube and is not observable otherwise.

2.
ACS Omega ; 5(16): 9348-9355, 2020 Apr 28.
Article in English | MEDLINE | ID: mdl-32363286

ABSTRACT

The concept of enthalpy-entropy compensation (EEC) is one of the highly debated areas of thermodynamics. The conformational change due to restricted double-bond rotation shows a classic two-site chemical exchange phenomenon and has been extensively studied. Fifty-four analogs of N,N-diethyl-m-toluamide (DEET) as a model system were synthesized to study the thermodynamics of the partial amide bond character using nuclear magnetic resonance (NMR) spectroscopy. Line-shape analysis as a function of temperature is used to estimate the chemical exchange. Eyring analysis was then used to convert the chemical exchange rates to determine the transition state enthalpy and entropy of the molecules. The experimental design follows selective variations that perturb one aspect of the molecular system and its influence on the observed thermodynamic effect. The results of the study demonstrate that amide bond resonance in analogs of DEET follows an EEC mechanism. Simple modifications made to DEET's structural motif alter both the enthalpy and entropy of the system and were limited overall to a temperature compensation factor, T ß = 292.20 K, 95% CI [290.66, 293.73]. We suggest EEC as a model to describe the kinetic compensation seen in chemical exchange phenomena in analogs of DEET.

3.
Chem Pharm Bull (Tokyo) ; 61(2): 229-36, 2013.
Article in English | MEDLINE | ID: mdl-23183544

ABSTRACT

Chalcones share some structural similarities with GW-1929, a highly-selective and potent agonist for peroxisome proliferator-activated receptor-gamma (PPARγ). In this study, we tested 53 structurally diverse chalcones to identify characteristics essential for PPARγ activation in a GAL4-based transactivation assay. This screen identified several novel chalcone agonists of PPARγ. Our results indicate that chalcones with an electron rich group or sterically large groups such as naphthyl on the carbonyl side tend to activate PPARγ. The absence of any strict structural or electronic requirements suggests that the flexibility of the PPARγ ligand binding pocket may allow binding of diverse chalcones with some preference for a slightly larger electron-rich group on the carbonyl side. We predict that further structure-activity relationship studies on chalcones with naphthalene or electron-rich groups near the carbonyl moiety will lead to the development of more potent PPARγ agonists.


Subject(s)
Chalcones/chemistry , PPAR gamma/agonists , Chalcones/pharmacology , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Gene Expression/drug effects , HEK293 Cells , Humans , PPAR gamma/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Structure-Activity Relationship , Transcription Factors/genetics , Transcription Factors/metabolism
4.
Bioorg Med Chem Lett ; 22(19): 6252-5, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-22959206

ABSTRACT

We have identified a new class of triarylmethyl amine compounds that can inhibit apolipoprotein E (apoE) production. ApoE is a cholesterol- and lipid-carrier protein implicated in aging, atherosclerosis, Alzheimer's Disease (AD), and other neurological and lipid-related disorders. Attenuation of apoE production is generally considered to be of therapeutic value. A majority of the apoE in the brain is produced by astrocytes. Here, we describe the design, synthesis, and biological screening of a small library of compounds that led to the identification of four triarylmethyl amines as potent inhibitors of apoE production in CCF-STTG1 astrocytoma cells.


Subject(s)
Amines/pharmacology , Apolipoproteins E/biosynthesis , Drug Design , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/pharmacology , Amines/chemical synthesis , Amines/chemistry , Astrocytoma/metabolism , Astrocytoma/pathology , Cell Line, Tumor , Humans , Molecular Structure , Small Molecule Libraries/chemistry
5.
Chem Phys Lett ; 523(27): 124-127, 2012 Jan 27.
Article in English | MEDLINE | ID: mdl-22322969

ABSTRACT

The rotation around the amide bond in N,N-diethyl-m-toluamide (m-DEET) has been studied extensively and often used in laboratory instructions to demonstrate the phenomenon of chemical exchange. Herein, we show that a simple modification to N,N-diethyl-o-toluamide (o-DEET) significantly alters the dynamics of the restricted rotation around the amide bond due to steric interactions between the ring methyl group and the two N-ethyl groups. This alters the classic two-site exchange due to restricted rotation around the amide bond, to a three-site exchange, with the third conformation trapped at a higher-energy state compared to the other two. This often overlooked phenomenon is elucidated using variable-temperature NMR, two-dimensional exchange spectroscopy and molecular modeling studies.

7.
J Am Chem Soc ; 124(18): 4972-3, 2002 May 08.
Article in English | MEDLINE | ID: mdl-11982357

ABSTRACT

This paper introduces a unique amino acid that can readily be incorporated into peptides to make them fold into beta-sheetlike structures that dimerize through beta-sheet interactions. This new amino acid, Orn(i-PrCO-Hao), consists of an ornithine residue with the beta-strand-mimicking amino acid Hao [J. Am. Chem. Soc. 2000, 122, 7654-7661] attached to its side chain. When Orn(i-PrCO-Hao) is incorporated into a peptide, or appended to its N-terminus, the Hao group hydrogen bonds to the three subsequent residues to form a beta-sheetlike structure. The amino acid Orn(i-PrCO-Hao) is readily used in peptide synthesis as its Fmoc derivative, Fmoc-Orn(i-PrCO-Hao)-OH (3). Fmoc-Orn(i-PrCO-Hao)-OH behaves like a regular amino acid in peptide synthesis and was uneventfully incorporated into the peptide o-anisoyl-Val-Orn(i-PrCO-Hao)-Phe-Ile-Leu-NHMe (4) through standard automated Fmoc solid-phase peptide synthesis, with DIC and HOAt as the coupling agent for Fmoc-Orn(i-PrCO-Hao)-OH and o-anisic acid and HATU as the coupling agent for all other couplings. A second synthetic strategy was developed to facilitate the preparation of peptides with N-terminal Orn(i-PrCO-Hao) residues, which avoids the need for the preparation of Fmoc-Orn(i-PrCO-Hao)-OH. In this strategy, Boc-Orn(Fmoc)-OH is used as the penultimate amino acid in the peptide synthesis, and i-PrCO-Hao-OH (2) is used as the final amino acid. N-Terminal Orn(i-PrCO-Hao) peptide H-Orn(i-PrCO-Hao)-Phe-Ile-Leu-NHMe.TFA (5) was prepared in a fashion similar to that for 4, using DIC and HOAt as the coupling agent for i-PrCO-Hao-OH and HATU as the coupling agent for all other couplings. 1H NMR transverse-ROESY, coupling constant, and chemical shift studies establish that peptide 4 forms a dimeric beta-sheetlike structure in CDCl3 solution. The 1H NMR studies also suggest that the ornithine unit adopts a well-defined turn conformation. Analogous 1H NMR studies of peptide 5 indicate that this TFA salt folds but does not dimerize in CD3OD solution. Collectively, these synthetic and spectroscopic studies establish that the amino acid Orn(i-PrCO-Hao) induces beta-sheet structure and interactions in peptides in suitable organic solvents. Unlike the Hao amino acid, which acts as a prosthetic to replace three residues of the peptide strand, the Orn(i-PrCO-Hao) amino acid acts as a splint that helps enforce a beta-sheetlike structure without replacing the residues and their side chains. This feature of Orn(i-PrCO-Hao) is important, because it allows the creation of beta-sheet structure with minimal perturbation of the peptide sequence.


Subject(s)
Amino Acids/chemistry , Dipeptides/chemistry , Ornithine/analogs & derivatives , Peptides/chemistry , Nuclear Magnetic Resonance, Biomolecular , Protein Folding , Protein Structure, Secondary
SELECTION OF CITATIONS
SEARCH DETAIL
...