Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Mol Cell Endocrinol ; 585: 112180, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38342135

ABSTRACT

The ovulatory response involves diverse molecular determinants, the interplay between which remains less investigated in fish. This study explores the temporal changes in the follicular microenvironment, regulatory factors, and underlying signaling events during ovulation in female zebrafish subjected to 14L:10D at 28 ± 1 °C in vivo vis-à-vis in hCG-stimulated full-grown (FG) follicles in vitro. Congruent with reduced GSH levels, SOD, and GPx activity, a graded increase in follicular free radicals, Nox4, and p38 MAPK phosphorylation in the morning hour groups (05:00 and 06:30) correlates positively with the ovulatory surge in inflammatory mediators (Tnf-α, Il-1ß, Il-6, Nos2, and Cox-2). Further, elevated Pgr expression and its nuclear translocation, congruent with follicular lhcgr, star, and hsd20b2 upregulation in vivo, corroborates well with the transcriptional activation of genes (pla2g4aa, ptgesl, ptger4b, mmp9, adamts9), triggering ovulation in this species. Mechanistically, an elevated ovulatory response in hCG-treated FG follicles in vitro involves the upregulation of inflammatory mediators, pgr and ovulation-associated genes in a manner sensitive to PKA- and MAPK3/1-mediated signaling.


Subject(s)
Superoxides , Zebrafish , Animals , Female , Zebrafish/metabolism , Superoxides/metabolism , Ovulation/genetics , Ovarian Follicle/metabolism , Inflammation Mediators/metabolism
2.
Front Cell Dev Biol ; 11: 1202693, 2023.
Article in English | MEDLINE | ID: mdl-37457295

ABSTRACT

Optimal mitochondrial functioning is indispensable for acquiring oocyte competence and meiotic maturation, whilst mitochondrial dysfunction may lead to diminished reproductive potential and impaired fertility. The role of the intra-ovarian IGF system in ovarian follicular dynamics has been implicated earlier. Although several studies have demonstrated the role of the IGF axis in facilitating mitochondrial function over a multitude of cell lines, its role in oocyte energy metabolism remains largely unexplored. Here using zebrafish, the relative importance of IGF1 in modulating oocyte mitochondrial bioenergetics has been investigated. A dramatic increase in ovarian lhcgr and igf1 expression accompanied heightened ATP levels and mitochondrial polarization in full-grown (FG) oocytes resuming meiotic maturation and ovulation in vivo. Concomitant with elevated igf1 expression and IGF1R phosphorylation, hCG (LH analog) stimulation of FG follicles in vitro prompted a sharp increase in NRF-1 and ATP levels, suggesting a positive influence of gonadotropin action on igf1 expression vis-à-vis oocyte bioenergetics. While recombinant IGF1 administration enhanced mitochondrial function, IGF1R immunodepletion or priming with PI3K inhibitor wortmannin could abrogate NRF-1 immunoreactivity, expression of respiratory chain subunits, ΔΨM, and ATP content. Mechanistically, activation of PI3K/Akt signaling in IGF1-treated follicles corroborated well with the rapid phosphorylation of GSK3ß at Ser9 (inactive) followed by PGC-1ß accumulation. While selective inhibition of GSK3ß promoted PGC-1ß, Akt inhibition could abrogate IGF1-induced p-GSK3ß (Ser9) and PGC-1ß immunoreactive protein indicating Akt-mediated GSK3ß inactivation and PGC-1ß stabilization. The IGF1-depleted follicles showed elevated superoxide anions, subdued steroidogenic potential, and attenuated G2-M1 transition. In summary, this study highlights the importance of IGF1 signaling in oocyte bioenergetics prior to resumption of meiosis.

3.
Chem Biol Interact ; 351: 109762, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34843692

ABSTRACT

Nonylphenol (NP), an environmentally persistent and toxic endocrine-disrupting chemical with estrogenic properties, has severe implications on humans and wildlife. Accumulating evidence demonstrates the toxic response of NP on the developmental process, nervous system, and reproductive parameters. Although NP exposure has been implicated in chronic liver injury, the underlying events associated with hepatic pathophysiology remain less investigated. Using male zebrafish (Danio rerio) as the model, the present study investigates the impact of environmentally relevant concentrations of NP (50 and 100 µg/L, 21 days) on hepatic redox homeostasis vis-à-vis cellular energy sensors, inflammatory response, and cell death involving a mechanistic insight into estrogen receptor (ER) modulation. Our results demonstrate that congruent with significant alteration in transcript abundance of antioxidant enzymes (SOD1, SOD2, Catalase, GPx1a, GSTα1), chronic exposure to NP promotes ROS synthesis, more specifically superoxide anions and H2O2 levels, and lipid peroxidation potentially through elevated NOX4 expression. Importantly, NP perturbation of markers associated with fatty acid biosynthesis (srebf1/fasn) and cellular energy-sensing network (sirt1/ampkα/pgc1α) indicates dysregulated energy homeostasis, metabolic disruption, and macrovesicular steatosis, albeit with differential sensitivity at the dose level tested. Besides, elevated p38-MAPK phosphorylation (activation) together with loss of ER homeostasis at both mRNA (esr1, esr2a, esr2b) and protein (ERα, ERß) levels suggest that NP modulation of ER abundance may have a significant influence on hepatic events. Elevated expression of inflammatory markers (TLR4, p-NF-κB, TNF-α, IL-6, IL-1ß, and NOS2) and pro-apoptotic and necrotic regulators, e.g., Bax, caspase- 8, -9 and cleaved PARP1 (50 kDa), indicate chronic inflammation and hepatotoxicity in NP-exposed males. Collectively, elevated oxidative stress, metabolic dysregulation and immune modulation may lead to chronic liver injury in organisms exposed to metabolic disrupting chemicals.


Subject(s)
Chemical and Drug Induced Liver Injury/etiology , Chemical and Drug Induced Liver Injury/metabolism , Endocrine Disruptors/toxicity , Oxidative Stress/drug effects , Phenols/toxicity , Animals , Apoptosis/drug effects , Apoptosis Regulatory Proteins/metabolism , Chemical and Drug Induced Liver Injury/pathology , Endoplasmic Reticulum/metabolism , Hydrogen Peroxide/metabolism , Lipid Metabolism/drug effects , Lipid Peroxidation/drug effects , Liver/drug effects , Liver/pathology , Male , NADPH Oxidase 4/metabolism , NF-kappa B/metabolism , Superoxides/metabolism , Zebrafish , Zebrafish Proteins/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
4.
Free Radic Biol Med ; 172: 675-687, 2021 08 20.
Article in English | MEDLINE | ID: mdl-34289395

ABSTRACT

Steroids and insulin-like growth factors (Igfs) are indispensable for folliculogenesis and reproductive fitness in the vertebrate ovary. The intrafollicular redox balance is also of immense importance for ovarian follicles wherein low levels of ROS are being utilized for cell signalling and regulation of gene expression; its excess may interfere with normal physiological processes leading to ovotoxicity. However, the functional relevance of ovarian steroidogenesis in maintaining the follicular microenvironment with coordinated redox homeostasis and intra-ovarian growth factors axis is relatively less understood. Using zebrafish full-grown (FG) ovarian follicles in vitro, our study shows that blocking steroid biosynthesis with anti-steroidal drugs, DL-aminoglutethimide (AG) or Trilostane (Trilo), prevents hCG (LH analogue)-induced StAR expression concomitant with a robust increase in intrafollicular ROS levels. Congruent with heightened intracellular levels of superoxide anions (O2•-) and hydrogen peroxide (H2O2), priming with AG or Trilo abrogates the transcript abundance of major antioxidant enzyme genes (SOD1, SOD2, and CAT) in hCG-stimulated follicles. Significantly, blocking steroidogenesis attenuates transcript abundance of HSP70 but elevates NOX4 expression potentially through ERα-mediated pathway. Importantly, disrupted redox balance in AG/Trilo pre-incubated FG follicles negatively impacts hCG-mediated activation of PKA/CREB signaling and transcriptional activation of igf ligands. Elevated ROS attenuation of antioxidant defense parameters and impaired endocrine and autocrine/paracrine homeostasis converge upon reduced p34cdc2 (Thr-161) phosphorylation, a reliable marker for MPF activation, and resumption of meiotic G2-M1 transition in hCG-treated follicles. Collectively, altered redox homeostasis in steroid-depleted follicles has a significant negative influence on GTH (LH) regulation of follicular events, specifically Igf synthesis, meiotic maturational competence and ovarian fitness.


Subject(s)
Somatomedins , Zebrafish , Animals , Female , Homeostasis , Hydrogen Peroxide/metabolism , Oocytes/metabolism , Oxidation-Reduction , Somatomedins/metabolism , Steroids , Zebrafish/metabolism
5.
Environ Pollut ; 267: 115692, 2020 Dec.
Article in English | MEDLINE | ID: mdl-33254711

ABSTRACT

Bisphenol A (BPA) is a highly pervasive chemical in consumer products with its ascribed endocrine-disrupting properties. Several studies have shown the cytotoxic, genotoxic, and carcinogenic property of BPA over a multitude of tissues. Although BPA exposure has earlier been implicated in female infertility, the underlying molecular mechanisms explaining the toxicity of BPA in the ovary remains less understood. In the present study, a plausible correlation between redox balance or inflammatory signaling and reproductive fitness upon BPA exposure has been examined in zebrafish (Danio rerio) ovary. Congruent with significant alteration of major antioxidant enzymes (SOD1, SOD2, catalase, GPx1α, GSTα1) at the transcript level, 30 d BPA exposure at environmentally relevant concentrations (1, 10 and 100 µg L-1) promotes ovarian ROS/RNS synthesis, lipid peroxidation but attenuates catalase activity indicating elevated stress response. BPA promotes a sharp increase in ovarian p38 MAPK, NF-κB phosphorylation (activation), inducible nitric oxide synthase (Nos2a), and pro-inflammatory cytokines (TNF-α and IL-1ß) expression, the reliable markers for inflammatory response. Congruent to an increased number of atretic follicles, BPA-exposed zebrafish ovary reveals elevated Bax/Bcl2 ratio, activation of caspase-8, -3 and DNA breakdown suggesting heightened cell death. Importantly, significant alteration in nuclear estrogen receptor (ER) transcripts (esr1, esr2a, and esr2b) and proteins (ERα, ERß), gonadotropin receptors, and markers associated with steroidogenesis and growth factor gene expression in BPA-exposed ovary correlates well with impaired ovarian functions and maturational response. Collectively, elevated oxidative/nitrosative stress-mediated inflammatory response and altered ER expression can influence ovarian health and reproductive fitness in organisms exposed to BPA environment.


Subject(s)
Ovary , Zebrafish , Animals , Benzhydryl Compounds/toxicity , Female , Genetic Fitness , Humans , Nitrosative Stress , Oxidation-Reduction , Phenols
6.
Org Biomol Chem ; 18(34): 6716-6723, 2020 09 14.
Article in English | MEDLINE | ID: mdl-32820796

ABSTRACT

An innovative fluorescein appended naphthalene diimide based probe (FANDI) has been prepared and characterized to selectively recognize hypochlorite or ClO- ions in the presence of other reactive oxygen species (ROS) and biorelevant ions, using a unique chemodosimetric method. Hypochlorite induced oxidation can efficiently alter the initial photophysical properties of FANDI and shows an easily detectable "turn on" green fluorescence. The chemodosimeter FANDI can efficiently detect exogenous as well as endogenous ClO- ions in RAW 264.7 cells (macrophages) and zebrafish embryos (Danio rerio) which further ensures the high potential, easy cell permeability and photostability of FANDI and makes it worth exploring in the future.


Subject(s)
Hypochlorous Acid
7.
Ecotoxicol Environ Saf ; 202: 110944, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32800225

ABSTRACT

Bisphenol A (BPA), a weak estrogenic endocrine disruptor and a well-known plasticizer, has the potential to perturb diverse physiological functions; however, its impact on immune and metabolic function in aquatic vertebrates is relatively less understood. The present study aims to investigate the impact of BPA on hepatotoxicity, metabolic and immune parameters vis-à-vis estrogen receptor expression modulation in a freshwater teleost, Labeo bata (Cyprinidae, Cypriniformes). The 96-h median lethal concentration of BPA in L. bata has been determined as 4.79 mg/L. Our data demonstrate that congruent with induction of plasma vitellogenin (VTG), chronic exposure to sub-lethal BPA (2 and 4 µM/L) attenuates erythrocyte count, hemoglobin concentration, packed cell volume, mean corpuscular hemoglobin, but not leukocyte number. Further, a significant increase in MDA, concomitant with diminished catalase and heightened GST activity corroborates well with hepatic dystrophic changes, appearance of fatty liver (macrovesicular steatosis) and elevated serum lipids (triglyceride, cholesterol, LDL, VLDL) in BPA-treated groups. Interestingly, a differential regulation of estrogen receptor (ER) subtypes at transcript and protein level signifies negative influence of BPA on hepatic ERα/ERß homeostasis in this species. While at a lower dose it promotes Akt phosphorylation (activation), BPA at the higher dose attenuates ERK1/2 phosphorylation (activation), suggesting potential alteration in insulin sensitivity. Importantly, dose-dependent decrease in hepatic TNF-α, IL-1ß, iNOS (NOS2) expression and nitric oxide (NO) level corresponds well with progressive decline in p-NF-κB, p-p38 MAPK, albeit with differential sensitivity, in BPA-exposed groups. Collectively, BPA exposure has wide-spread negative influence on hematological, biochemical and hepatic events in this species.


Subject(s)
Benzhydryl Compounds/toxicity , Cyprinidae/metabolism , Endocrine Disruptors/toxicity , Liver/drug effects , Oxidative Stress/drug effects , Phenols/toxicity , Receptors, Estrogen/genetics , Animals , Cyprinidae/immunology , Cytokines/metabolism , Dose-Response Relationship, Drug , Estrogen Receptor alpha/genetics , Estrogen Receptor beta/genetics , Fresh Water/chemistry , Gene Expression/drug effects , Homeostasis , Inflammation , Liver/immunology , Liver/metabolism , Metabolic Networks and Pathways/drug effects , Vitellogenins/metabolism
8.
Mol Cell Endocrinol ; 496: 110544, 2019 10 01.
Article in English | MEDLINE | ID: mdl-31419465

ABSTRACT

Participation of cyclic nucleotide-mediated signaling in nitric oxide/soluble guanylate cyclase (NO/sGC) regulation of oocyte maturation (OM) in perch (Anabas testudineus) follicle-enclosed oocytes has been investigated. Congruent with sharp decline in follicular cyclic GMP (cGMP) level, nitric oxide synthase (NOS)-inhibitor (L-NAME) attenuates protein kinase A (PKA) phosphorylation but promotes p-ERK1/2 and p-p34Cdc2 (Thr-161) in maturing oocytes. Conversely, NO donor (SNP) prevents OM, potentially through elevated cGMP synthesis. Expression and localization of Nos2 and Nos3 immunoreactivity in perch ovary varied considerably at progressively higher stages of folliculogenesis. While sGC inhibitor (ODQ) alone could induce OM, 8-bromo-cGMP attenuates 17,20ß-P-induced OM indicating functional significance of NO/sGC/cGMP in perch ovary. Interestingly, high NO/cGMP inhibition of OM shows positive relation with elevated cAMP level. MIS induced OM is more susceptible to the oocyte-specific phosphodiesterase (PDE) 3 than PDE4 inhibition. Collectively, high NO/cGMP attenuation of OM potentially involves PDE3 inhibition, cAMP accumulation and PKA activation.


Subject(s)
Cyclic GMP/metabolism , Fish Proteins/biosynthesis , Fishes/metabolism , Gene Expression Regulation, Enzymologic , Meiosis , Nitric Oxide Synthase Type III/biosynthesis , Nitric Oxide Synthase Type II/biosynthesis , Nitric Oxide/metabolism , Ovary/enzymology , Animals , Female
9.
Org Biomol Chem ; 17(21): 5230-5233, 2019 05 29.
Article in English | MEDLINE | ID: mdl-30990508

ABSTRACT

A p-nitrophenyl based rhodamine probe (NPRB) has been designed and synthesized for the selective, real-time detection of Al(iii) in aqueous medium with a lower micromolar range detection limit at physiological pH. All the spectroscopic and theoretical analyses validated the proposed 1 : 1 complexation between NPRB and Al3+ along with an 80-fold enhancement in fluorescence intensity. Using the "turn on" response of the probe, binding of NPRB to Al3+ in the brain tissue of adult male zebrafish (D. rerio) has been visualized through fluorescence microscopy.


Subject(s)
Aluminum/analysis , Brain/diagnostic imaging , Fluorescent Dyes/chemistry , Optical Imaging , Rhodamines/chemistry , Zebrafish , Animals , Ions/analysis , Male , Microscopy, Fluorescence
10.
Ecotoxicol Environ Saf ; 174: 574-583, 2019 Jun 15.
Article in English | MEDLINE | ID: mdl-30870658

ABSTRACT

Endocrine disruptors interfere with normal sexual and reproductive development of numerous organisms. Widely used in several chemical and manufacturing industries, nonylphenol (NP), a potent xenoestrogen, has the potential to perturb immune system. Using rat splenic macrophages (SMΦ) as the model system, NP-modulation of lipopolysaccharide (LPS)-induced inflammatory response has been investigated. Our results demonstrate that NP (0.1-10 µM) attenuates catalase activity, reactive oxygen species (ROS) generation and nitric oxide (NO) synthesis in LPS-treated SMΦ in vitro. NP inhibition of LPS-induced nuclear factor kappa B (NF-κB) activation and pro-inflammatory cytokine gene expression corroborate well with attenuation of suppressor of cytokine signalling 3 (SOCS3). Besides, elevated expression of anti-inflammatory factors reveals inverse correlation with suppression of endotoxin-induced M1 polarization in NP pre-incubated cells. While LPS promotes, NP prevents ERK1/2 (extracellular-signa1-regulated kinase 1/2) phosphorylation and MEK-inhibitor abrogates SOCS3 expression and NO production suggesting involvement of ERK1/2 in NP inhibition of SOCS3 expression. Further, translational inhibitor cycloheximide prevents LPS-induced NF-κB activation indicating functional importance of de novo synthesis of SOCS3, at least in part, in toll-like receptor 4 (TLR4)-mediated inflammatory response. Collectively, present study provides evidence favouring participation of SOCS3 in NP modulation of inflammatory response in rat SMΦ.


Subject(s)
Lipopolysaccharides/pharmacology , Macrophages/drug effects , Phenols/pharmacology , Suppressor of Cytokine Signaling 3 Protein/metabolism , Animals , Catalase/metabolism , Cytokines/genetics , Cytokines/metabolism , Drug Interactions , Extracellular Signal-Regulated MAP Kinases/metabolism , Macrophages/enzymology , Macrophages/metabolism , Male , NF-kappa B/metabolism , Nitric Oxide/metabolism , Rats , Reactive Oxygen Species/metabolism , Spleen/cytology , Toll-Like Receptor 4/metabolism
11.
Gen Comp Endocrinol ; 279: 35-44, 2019 08 01.
Article in English | MEDLINE | ID: mdl-30244056

ABSTRACT

Nitric oxide (NO, nitrogen monoxide), a short-lived, free radical carrying an unpaired electron, is one of the smallest molecules synthesized in the biological system. In addition to its role in angiogenesis, neuronal function and inflammatory response, NO has wide-spread significance in regulation of ovarian function in vertebrates. Based on tissue-specific expression, three different nitric oxide synthase (NOS) isoforms, neuronal (nNOS) or NOS1, inducible (iNOS) or NOS2 and endothelial (eNOS) or NOS3 have been identified. While expression of both inducible (iNOS) and constitutive NOS (eNOS) isoforms varies considerably in the ovary at various stages of follicular growth and development, selective binding of NO with proteins containing heme moieties have significant influence on ovarian steroidogenesis. Besides, NO modulation of ovulatory response suggests physiological significance of NO/NOS system in mammalian ovary. Compared to the duality of NO action on follicular development, steroidogenesis and meiotic maturation in mammalian models, participation of NO/NOS system in teleost ovary is less investigated. Genes encoding nos1 and nos2 have been identified in fish; however, presence of nos3 is still ambiguous. Interestingly, two distinct nos2 genes, nos2a and nos2b in zebrafish, possibly arose through whole genome duplication. Differential expression of major NOS isoforms in catfish ovary, NO inhibition of meiosis resumption in Anabas testudineus follicle-enclosed oocytes and NO/sGC/cGMP modulation of oocyte maturation in zebrafish are some of the recent advancements. The present overview is an update on the advancements made and shortfalls still remaining in NO/NOS modulation of intercellular communication in teleost vis-à-vis mammalian ovary.


Subject(s)
Nitric Oxide/metabolism , Ovary/physiology , Animals , Female , Humans , Models, Biological , Nitric Oxide Synthase/metabolism , Reproduction
12.
Mol Cell Endocrinol ; 476: 57-69, 2018 11 15.
Article in English | MEDLINE | ID: mdl-29715496

ABSTRACT

The effect of insulin priming on Il-10 expression, regulation of inflammatory cytokines and participation of intra-cellular signalling events, primarily ERK1/2 and PI3K/Akt, has been investigated in high glucose (HG) and/or lipopolysaccharide (LPS)-induced murine macrophages. Our results demonstrate that congruent with sharp increase in ERK1/2 and CREB phosphorylation, insulin stimulation in vitro promotes significant increase in Il-10 expression in mouse peritoneal macrophage and RAW 264.7 cells, both positive for anti-IRß. Pharmacological inhibition of MEK/MAPK, but not PI3K/Akt cascade, abrogates CREB phosphorylation and Il-10 synthesis indicating functional relevance of insulin action. Conversely, priming with PI3K inhibitor wortmannin prevents insulin attenuation of HG- and/or LPS-induced p38 MAPK and NF-κB activation, Tnf-α, Il-1ß expression as well as NO production. Congruent with reduced Il-10 expression, MEK inhibition abrogates insulin action allowing significant increase in Tlr4 expression and LPS response indicating insulin-induced Il-10 might have pivotal influence in regulation of chronic as well as acute inflammatory response.


Subject(s)
Insulin/metabolism , Lipopolysaccharides/pharmacology , Macrophages, Peritoneal/metabolism , Signal Transduction , Animals , Anti-Inflammatory Agents/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Cytokines/genetics , Cytokines/metabolism , Gene Expression Regulation/drug effects , Glucose/toxicity , Inflammation/pathology , Inflammation Mediators/metabolism , Insulin/pharmacology , Macrophages, Peritoneal/drug effects , Male , Mice , Mice, Inbred BALB C , Mitogen-Activated Protein Kinase Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinases/antagonists & inhibitors , Mitogen-Activated Protein Kinases/metabolism , NF-kappa B/metabolism , RAW 264.7 Cells , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptor, Insulin/genetics , Receptor, Insulin/metabolism , Signal Transduction/drug effects
13.
Sci Rep ; 8(1): 3402, 2018 02 21.
Article in English | MEDLINE | ID: mdl-29467435

ABSTRACT

A chemosensor, 3-aminophenol-based rhodamine conjugate (ARC) has been developed for visualisation of diethylchlorophosphate (DCP), mimic of a chemical warfare agent, in Catfish brain. The simple detection of DCP by "turn-on" fluorescence property of the chemosensor makes it unique for easy and rapid in vivo and in vitro detection of DCP with the detection limit of 5.6 nM.


Subject(s)
Brain/metabolism , Catfishes/metabolism , Fluorescent Dyes/metabolism , Organophosphorus Compounds/metabolism , Rhodamines/metabolism , Animals , Fluorescence , Limit of Detection
14.
Zygote ; 26(1): 62-75, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29229010

ABSTRACT

Participation and relative importance of phosphatidylinositol-3 kinase (PI3K) and mitogen-activated protein kinase (MAPK) signalling, either alone or in combination, have been investigated during 17α,20ß-dihydroxy-4-pregnen-3-one (DHP)-induced meiotic G2-M1 transition in denuded zebrafish oocyte. Results demonstrate that concomitant with rapid phosphorylation (activation) of Akt (Ser473) and MAPK (ERK1/2) at as early as 15 min of incubation, DHP stimulation promotes enhanced an GVBD response and histone H1 kinase activation between 1 and 5 h in full-grown oocytes in vitro. While p-Akt reaches its peak at 60 to 90 min and undergoes downregulation to the basal level by 240 min, ERK1/2 phosphorylation (activation) increases gradually until 120 min and remains high thereafter. Although, priming with MEK1/2 inhibitor U0126 is without effect, PI3K inhibitors, wortmannin or LY294002, delay the GVBD response significantly (P < 0.001) until 3 h but not at 5 h of incubation. Interestingly, blocking PI3K and MEK function together could abrogate steroid-induced oocyte maturation at all time points tested. While DHP stimulation promotes phospho-PKA catalytic (p-PKAc) dephosphorylation (inactivation) between 30-120 min of incubation, simultaneous inhibition of PI3K and MEK1/2 kinases abrogates DHP action. Conversely, elevated intra-oocyte cAMP, through priming with either adenylyl cyclase (AC) activator forskolin (FK) or dibutyryl cAMP (db-cAMP), abrogates steroid-induced Akt and ERK1/2 phosphorylation. Taken together, these results suggest that DHP-induced Akt and ERK activation precedes the onset of meiosis (GVBD response) in a cAMP-sensitive manner and PI3K/Akt and MEK/MAPK pathways together have a pivotal influence in the downregulation of PKA and resumption of meiotic maturation in zebrafish oocytes in vitro.


Subject(s)
Mitogen-Activated Protein Kinase 1/metabolism , Mitogen-Activated Protein Kinase 3/metabolism , Oocytes/physiology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Animals , Cyclic AMP/metabolism , Enzyme Inhibitors/pharmacology , Female , G2 Phase/physiology , In Vitro Oocyte Maturation Techniques , MAP Kinase Kinase 1/metabolism , Meiosis/physiology , Mitogen-Activated Protein Kinase 1/antagonists & inhibitors , Mitogen-Activated Protein Kinase 3/antagonists & inhibitors , Phosphoinositide-3 Kinase Inhibitors , Phosphorylation , Pregnenes/pharmacology , Signal Transduction/drug effects , Zebrafish , Zebrafish Proteins/metabolism
15.
Mol Cell Endocrinol ; 460: 162-169, 2018 01 15.
Article in English | MEDLINE | ID: mdl-28743518

ABSTRACT

Nitric oxide (NO) regulation of ovarian function in mammals has been studied extensively. However, relatively less information is available on NO action on meiotic G2-M1 transition in teleost oocytes. In the present study using follicle-enclosed oocytes of Anabas testudineus, NO regulation of intra-oocyte signaling events during meiotic G2-M1 transition were examined. Priming with NO donor, sodium nitroprusside (SNP) prevented 17α,20ß-dihydroxy-4-pregenen-3-one (17,20ß-P)-induced germinal vesicle break down (GVBD) in dose- and duration-dependent manner. Impaired GVBD response in SNP-treated groups corroborated well with reduced p34Cdc2 (Thr161) phosphorylation. Immunoblot analysis revealed that congruent with elevated cAMP-dependent protein kinase (PKA) phosphorylation (activation), NO inhibition of meiotic maturation involves down regulation of Cdc25 activation, Mos synthesis and MAPK3/1 (ERK1/2) phosphorylation. However, priming with PKA inhibitor (H89) could reverse SNP attenuation of oocyte GVBD significantly. Collectively our results indicate that negative influence of NO on meiotic G2-M1 transition in perch oocytes might involve PKA activation.


Subject(s)
Cell Division/drug effects , Cyclic AMP-Dependent Protein Kinases/metabolism , Fishes/metabolism , G2 Phase/drug effects , Meiosis/drug effects , Nitric Oxide/pharmacology , Oocytes/cytology , Signal Transduction , Animals , CDC2 Protein Kinase/metabolism , Enzyme Activation/drug effects , Female , Hydroxyprogesterones/pharmacology , MAP Kinase Signaling System/drug effects , Models, Biological , Nitric Oxide Donors/pharmacology , Nitroprusside/pharmacology , Oocytes/drug effects , Oocytes/metabolism , Phosphorylation , Signal Transduction/drug effects
16.
Gen Comp Endocrinol ; 241: 33-40, 2017 01 15.
Article in English | MEDLINE | ID: mdl-26773339

ABSTRACT

Participation of major endocrine and/or local autocrine/paracrine factors and potential interplay between apparently disparate intra-oocyte signalling events during maintenance and withdrawal of meiotic prophase arrest has been an area of active research in recent years. Studies on oocyte maturation have contributed substantially in the discovery of some of the most important biochemical and cellular events like functional significance of novel membrane-associated steroid receptors, elucidation of maturation promoting factor (MPF), cytostatic factor (CSF) and other signalling cascades that entrain the cell cycle clock to hormonal stimuli. While follicular estrogen has largely been implicated in maintenance of prophase arrest, involvement of maturational steroid and membrane progestin receptor in resumption of meiotic G2-M1 transition in piscine oocytes has been shown earlier. Moreover, detection of ovarian IGF system, maturational gonadotropin stimulation of IGF ligands and potential synergism between maturational steroid and IGF1 in zebrafish oocytes are most recent advancements. Though endocrine/paracrine regulation of cyclic nucleotide-mediated signalling events in meiotic cell cycle progression is well established, involvement of PI3K/Akt signalling cascade has also been reported in fish, amphibian and mammalian oocytes. The major objective of this overview is to describe how fish oocytes maintain high cAMP/PKA activity and how steroid- and/or growth factor-mediated signalling cascade regulate this pathway for the withdrawal of meiotic arrest. Moreover, special emphasis is placed on some recent findings on interaction of PKA with some of the MPF-regulating components (e.g., synthesis of cyclin B or MEK/MAPK signalling cascade) for the maintenance of prophase arrest.


Subject(s)
Cyclic AMP/metabolism , Hormones/pharmacology , Meiosis/physiology , Oocytes/physiology , Oogenesis/genetics , Zebrafish , Animals , Female , Meiosis/drug effects , Oocytes/drug effects , Oogenesis/drug effects , Paracrine Communication/drug effects , Phosphatidylinositol 3-Kinases/metabolism , Signal Transduction/drug effects , Signal Transduction/genetics , Zebrafish/physiology
17.
Gen Comp Endocrinol ; 239: 21-31, 2016 12 01.
Article in English | MEDLINE | ID: mdl-26853486

ABSTRACT

Present study reports differential expression of the two insulin receptor (IR) subtypes in zebrafish ovary at various stages of follicular growth and potential involvement of IR in insulin-induced oocyte maturation. The results showed that mRNA expression for IR subtypes, insra and insrb, exhibited higher levels in mid-vitellogenic (MV) and full-grown (FG) rather than pre-vitellogenic (PV) oocytes. Interestingly, compared to the levels in denuded oocytes, mRNAs for both insra and insrb were expressed at much higher level in the follicle layer harvested from FG oocytes. Immunoprecipitation using IRß antibody could detect a protein band of desired size (∼95kDa) in FG oocyte lysates. Further, IRß immunoreactivity was detected in ovarian tissue sections, especially at the follicle layer and oocyte membrane of MV and FG, but not PV stage oocytes. While hCG (10IU/ml) stimulation was without effect, priming with insulin (5µM) could promote oocyte maturation of MV oocytes in a manner sensitive to de novo protein and steroid biosynthesis. Compared to hCG, in insulin pre-incubated MV oocytes, stimulation with maturation inducing steroid (MIS), 17α,20ß-dihydroxy-4-pregnen-3-one (DHP) elicited higher maturational response. Potential involvement of insulin-mediated action on acquisition of maturational competence and regulation of oocyte maturation was further manifested through up regulation of 20ß-hydroxysteroid dehydrogenase (20ß-hsd), MIS receptor (mPRα), insulin-like growth factor 3 (igf3) and IGF1 receptor (igf1rb), but not cyp19a expression in MV oocytes. Moreover, priming with anti-IRß attenuated insulin action on meiotic G2-M1 transition indicating the specificity of insulin action and physiological relevance of IR in zebrafish ovary.


Subject(s)
Insulin/pharmacology , Oogenesis/drug effects , Ovary/drug effects , Ovary/metabolism , Receptor, Insulin/genetics , Zebrafish/genetics , Animals , Female , Insulin/metabolism , Oocytes/drug effects , Oocytes/metabolism , Oogenesis/genetics , Ovarian Follicle/drug effects , Ovarian Follicle/metabolism , Ovary/physiology , Protein Isoforms/genetics , Protein Isoforms/metabolism , Receptor, Insulin/metabolism , Receptors, Steroid/genetics , Receptors, Steroid/metabolism , Somatomedins/metabolism , Zebrafish/physiology , Zebrafish Proteins/genetics , Zebrafish Proteins/metabolism
18.
Zygote ; 24(2): 181-94, 2016 Apr.
Article in English | MEDLINE | ID: mdl-25707854

ABSTRACT

Regulation of insulin-mediated resumption of meiotic maturation in catfish oocytes was investigated. Insulin stimulation of post-vitellogenic oocytes promotes the synthesis of cyclin B, histone H1 kinase activation and a germinal vesicle breakdown (GVBD) response in a dose-dependent and duration-dependent manner. The PI3K inhibitor wortmannin abrogates recombinant human (rh)-insulin action on histone H1 kinase activation and meiotic G2-M1 transition in denuded and follicle-enclosed oocytes in vitro. While the translational inhibitor cycloheximide attenuates rh-insulin action, priming with transcriptional blocker actinomycin D prevents insulin-stimulated maturational response appreciably, albeit in low amounts. Compared with rh-insulin, human chorionic gonadotrophin (hCG) stimulation of follicle-enclosed oocytes in vitro triggers a sharp increase in 17α,20ß-dihydroxy-4-pregnen-3-one (17α,20ß-DHP) secreted in the incubation medium at 12 h. Interestingly, the insulin, but not the hCG-induced, maturational response shows less susceptibility to steroidogenesis inhibitors, trilostane or dl-aminoglutethimide. In addition, priming with phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine (IBMX) or cell-permeable dbcAMP or adenylyl cyclase activator forskolin reverses the action of insulin on meiotic G2-M1 transition. Conversely, the adenylyl cyclase inhibitor, SQ 22536, or PKA inhibitor H89 promotes the resumption of meiosis alone and further potentiates the GVBD response in the presence of rh-insulin. Furthermore, insulin-mediated meiotic maturation involves the down-regulation of endogenous protein kinase A (PKA) activity in a manner sensitive to PI3K activation, suggesting potential involvement of a cross-talk between cAMP/PKA and insulin-mediated signalling cascade in catfish oocytes in vitro. Taken together, these results suggest that rh-insulin regulation of the maturational response in C. batrachus oocytes involves down-regulation of PKA, synthesis of cyclin B, and histone H1 kinase activation and demonstrates reduced sensitivity to steroidogenesis and transcriptional inhibition.


Subject(s)
Cell Cycle/drug effects , Insulin/pharmacology , Meiosis/drug effects , Oocytes/drug effects , Animals , Catfishes , Cells, Cultured , Chorionic Gonadotropin/pharmacology , Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclin B/metabolism , Cycloheximide/pharmacology , Dactinomycin/pharmacology , Dose-Response Relationship, Drug , Female , Hydroxyprogesterones/metabolism , Immunoblotting , Insulin/genetics , Oocytes/cytology , Oocytes/physiology , Ovarian Follicle/cytology , Protein Kinases/metabolism , Protein Synthesis Inhibitors/pharmacology , Recombinant Proteins/pharmacology , Time Factors
19.
Reproduction ; 151(1): 59-72, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26500283

ABSTRACT

Binding of 17ß-estradiol (E2) to novel G-protein coupled receptor, Gper1, promotes intra-oocyte adenylyl cyclase activity and transactivates epidermal growth factor receptor to ensure prophase-I arrest. Although involvement of either membrane progestin receptor (mPR) or Igf system has been implicated in regulation of meiosis resumption, possibility of concurrent activation and potential synergism between 17α,20ß-dihydroxy-4-pregnen-3-one (DHP)- and Igf-mediated signalling cascades in alleviating E2 inhibition of oocyte maturation (OM) has not been investigated. Here using zebrafish (Danio rerio) defolliculated oocytes, we examined the effect of DHP and Igf1, either alone or in combination, in presence or absence of E2, on OM in vitro. While priming of denuded oocytes with E2 blocked spontaneous maturation, co-treatment with DHP (3 nM) and Igf1 (10 nM), but not alone, reversed E2 inhibition and promoted a robust increase in germinal vesicle breakdown (GVBD). Although stimulation with either Igf1 or DHP promoted Akt phosphorylation, pharmacological inhibition of PI3K/Akt signalling prevented Igf1-induced GVBD but delayed DHP action till 4-5 h of incubation. Moreover, high intra-oocyte cAMP attenuates both DHP and Igf1-mediated OM and co-stimulation with DHP and Igf1 could effectively reverse E2 action on PKA phosphorylation. Interestingly, data from in vivo studies reveal that heightened expression of igf1, igf3 transcripts in intact follicles corresponded well with elevated phosphorylation of Igf1r and Akt, mPRa immunoreactivity, PKA inhibition and accelerated GVBD response just prior to ovulation. This indicates potential synergism between maturational steroid and Igf1 which might have physiological relevance in overcoming E2 inhibition of meiosis resumption in zebrafish oocytes.


Subject(s)
Hydroxyprogesterones/pharmacology , Oocytes/cytology , Prophase/physiology , Somatomedins/pharmacology , Zebrafish Proteins/pharmacology , Zebrafish , Animals , Cyclic AMP/physiology , Cyclic AMP-Dependent Protein Kinases/metabolism , Drug Synergism , Estradiol/pharmacology , Female , Oocytes/drug effects , Oocytes/growth & development , Phosphoinositide-3 Kinase Inhibitors , Phosphorylation/drug effects , Prophase/drug effects , Signal Transduction/drug effects , Somatomedins/physiology , Zebrafish Proteins/physiology
20.
Mol Cell Endocrinol ; 393(1-2): 109-19, 2014 Aug 05.
Article in English | MEDLINE | ID: mdl-24956082

ABSTRACT

High intra-cellular cyclic nucleotide (cAMP) ensures prophase-I arrest and prevent steroid-induced meiotic G2-M1 transition in full-grown oocytes; however, relatively less information is available for cAMP regulation of growth factor-stimulated signalling events in the oocyte model. Here using zebrafish oocytes, we show that priming with dibutyryl cAMP (dbcAMP) or cAMP modulators, e.g. adenylate cyclase activator, forskolin or phosphodiesterase inhibitors (IBMX/cilostamide) block insulin action on germinal vesicle breakdown (GVBD) and histone H1 kinase activation. Though high cAMP priming attenuates insulin-induced MAPK3/1 (ERK1/2) phosphorylation (activation), following 2h of insulin stimulation it fails to block MAPK activation and GVBD. Further, insulin stimulation promotes down regulation of phospho-PKAc (inactivation) and PKA inhibition by H89/PKI-(6-22)-amide overcomes negative regulation by cAMP and induces GVBD and MAPK activation. Moreover, MEK1/2 inhibitor U0126 has no influence on H89-induced GVBD; however, it delays GVBD response in insulin-stimulated oocytes. MAPK activation by okadaic acid (OA) promotes GVBD; however, high dbcAMP abrogates OA action suggesting cross-talk between cAMP/PKA and MAPK-mediated signalling pathways may contribute significantly in maturing zebrafish oocyte.


Subject(s)
Cyclic AMP-Dependent Protein Kinases/metabolism , Meiosis , Mitogen-Activated Protein Kinase 3/chemistry , Oocytes/enzymology , Animals , Cells, Cultured , Electrophoresis , Immunoblotting , Insulin/pharmacology , Mitogen-Activated Protein Kinase 3/metabolism , Oocytes/drug effects , Oocytes/metabolism , Zebrafish
SELECTION OF CITATIONS
SEARCH DETAIL
...