Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 120(51): e2311396120, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38079554

ABSTRACT

Cationic polymers have been identified as a promising type of antibacterial molecules, whose bioactivity can be tuned through structural modulation. Recent studies suggest that the placement of the cationic groups close to the core of the polymeric architecture rather than on appended side chains might improve both their bioactivity and selectivity for bacterial cells over mammalian cells. However, antibacterial main-chain cationic polymers are typically synthesized via polycondensations, which do not afford precise and uniform molecular design. Therefore, accessing main-chain cationic polymers with high degrees of molecular tunability hinges upon the development of controlled polymerizations tolerating cationic motifs (or cation progenitors) near the propagating species. Herein, we report the synthesis and ring-opening metathesis polymerization (ROMP) of N-methylpyridinium-fused norbornene monomers. The identification of reaction conditions leading to a well-controlled ROMP enabled structural diversification of the main-chain cationic polymers and a study of their bioactivity. This family of polyelectrolytes was found to be active against both Gram-negative (Escherichia coli) and Gram-positive (Methicillin-resistant Staphylococcus aureus) bacteria with minimal inhibitory concentrations as low as 25 µg/mL. Additionally, the molar mass of the polymers was found to impact their hemolytic activity with cationic polymers of smaller degrees of polymerization showing increased selectivity for bacteria over human red blood cells.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Polymers , Animals , Humans , Polymers/chemistry , Polymerization , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Norbornanes/chemistry , Cations , Mammals
2.
ACS Catal ; 13(11): 7263-7268, 2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37655265

ABSTRACT

While among the most common functional handles present in organic molecules, amines are a widely underutilized linchpin for C-C bond formation. To facilitate C-N bond cleavage, large activating groups are typically used but result in the generation of stoichiometric amounts of organic waste. Herein, we report an atom-economic activation of benzylic primary amines relying on the Sulfur(VI) Fluoride Exchange (SuFEx) click chemistry and the aza-Ramberg-Bäcklund reaction. This two-step sequence allows the high-yielding generation of 1,2-dialkyldiazenes from primary amines via loss of SO2. Excitation of the diazenes with blue light and an Ir photocatalyst affords radical pairs upon expulsion of N2, which can be coaxed into the formation of C(sp3)-C(sp2) bonds upon diffusion and capture by a Ni catalyst. This arylative strategy relying on a traceless click approach was harnessed in a variety of examples and its mechanism was investigated.

3.
Soft Matter ; 14(28): 5821-5831, 2018 Jul 18.
Article in English | MEDLINE | ID: mdl-29972192

ABSTRACT

We report here a smart functional low molecular weight gelator (LMWG) L, containing an unusual metal ion coordination site, i.e. "half-crown/two carbonyl". The gelator L shows excellent gelation behavior with typical fibrillar morphology in acetonitrile, methanol and ethanol media. Upon Ca2+ ion binding with its "half-crown/two carbonyl" coordination site, the acetonitrile gel of L exhibits a fiber to nanosphere morphology transformation along with a gel-to-sol phase transition as confirmed by microscopic investigation and by direct naked eye visualization, respectively. The mechanism involved in this morphology transformation and gel-to-sol phase transition process was studied thoroughly with the help of computational calculations and various spectroscopic experiments and discussed.

4.
Nanoscale ; 10(3): 1464-1473, 2018 Jan 18.
Article in English | MEDLINE | ID: mdl-29303192

ABSTRACT

Self-assembly of suitable molecular building blocks is an efficient and convenient approach to generate nanomaterials with various morphologies and functions. Moreover, understanding the nature of molecules and controlling factors of their self-assembly process is crucial in fundamental aspects of molecular self-assembly which provide insights into the design of new assemblies with functional nano-architectures. To this end, the present study reports water induced self-assembled multifaceted morphology formation and the plausible pathway of the morphology transformation of a single poly(aryl ether) dendron amphiphile 1(D). In THF, 1(D) self-assembles into helical fibers. However, with an increase in the water fraction in its THF solution, the morphology changes to nanorods through an intermediate scroll-up pathway of exfoliated fibers. The nanorod formation and transformation of 1(D) are investigated using various microscopy and spectroscopy techniques, which indicate that it has highly ordered multilayered arrays of 1(D) molecules. Finally, these multilayered arrays of 1(D) nanorods are exploited for constructing a model light-harvesting system via the incorporation of small quantities of two newly designed BODIPY based molecules as energy acceptors and 1(D) as an antenna chromophore.

5.
Chemistry ; 23(72): 18303-18313, 2017 Dec 22.
Article in English | MEDLINE | ID: mdl-29068512

ABSTRACT

The appropriate choice of the host molecules with well-defined optical activity (S-H/R-H) helps in the differentiation between two secondary ammonium ion-derivative guest molecules with different optical activities (R-G/S-G) based on the fluorescence resonance energy transfer (FRET)-based luminescence responses. Crown ether-based host molecules with opposite chiral configurations (R-H, S-H) have been derived from 1,1'-bi-2-naphthol (BINOL) derivatives that have axially chiral biaryl centers. These chiral crown ethers form host-guest complexes (i.e., [2]pseudorotaxanes) with chiral secondary ammonium ion derivatives (R-G, S-G). NMR spectroscopic studies show that the complexes are in a dynamic equilibrium in solution. Results of the 1 H NMR and fluorescence spectroscopic studies indicate a head-on orientation of the host and guest in the [2]pseudorotaxanes. The difference in the efficiency in the FRET-based responses between anthracene and the BINOL derivatives allow efficient chiral discrimination of the guests. Isothermal titration calorimetry and NMR investigations reveal that inclusion complexes between hosts and guests of the same chirality (R-H⋅R-G, S-H⋅S-G) are more stable relative to those of opposite chirality (R-H⋅S-G, S-H⋅R-G). However, FRET-based energy-transfer efficiency is higher for R-H⋅S-G and S-H⋅R-G complexes. NMR spectroscopic studies show that the relative orientation of the guest in the host cavity is significantly different when the host binds a guest of the same or opposite chirality; furthermore, the latter is more favorable for FRET, thus enabling discrimination between enantiomers. Interestingly, chiral discrimination of guest ions could also be achieved by using silica surfaces modified with chiral host molecules.

6.
Langmuir ; 33(41): 10989-10999, 2017 10 17.
Article in English | MEDLINE | ID: mdl-28922602

ABSTRACT

A unique fluorescence resonance energy transfer (FRET) process is found to be operational in a unilamellar lipid self-assembly in the aqueous phase. A newly synthesized naphthyl based long chain lipid derivative [N-(naphthalene-1-ylmethyl)tetradecane-1-ammonium chloride, 14NA+] forms various self-assembled architectures in the aqueous phase. Controlled changes in lipid concentration lead to a transition of the self-assemblies from micelles to vesicles to rods. In the presence of cucurbit[7]uril (CB7), 14NA+ forms a host-guest [2]pseudorotaxane complex (CB7∋14NA+) and secondary interactions lead to the formation of a lipid bilayer with hydrophobic pockets situated in between the layers. The change in the structure of 14NA+ assemblies, interaction with CB7 and formation of supramolecular assemblies of CB7∋14NA+ were examined using light scattering, spectroscopic, and microscopic techniques. Entrapment of a luminescent dye, anthracene within the hydrophobic bilayer of the supramolecular assembly CB7∋14NA+ favors a modified luminescent response due to an efficient FRET process. Further, the FRET process could be controlled by thermal and chemical stimuli that induce transformation of unilamellar vesicles.

7.
Chemistry ; 23(29): 7046-7051, 2017 May 23.
Article in English | MEDLINE | ID: mdl-28376247

ABSTRACT

Phenothiazines with a dimesityl boron moiety, a new class of aminoboranes with B-N linkage, were synthesized. These aminoboranes exhibited interesting photophysical behavior including aggregation-induced emission (AIE), mechanochromism (MC), mechanoluminescence (ML), and a mega Stokes shift (up to 312 nm in hexane). The solid-state emission of the aminoboranes could be switched reversibly by grinding-fuming processes. Furthermore, the phenothiazine derivative with a bromo and an arylborane group at 3- and 7-positions exhibited bright mechanoluminescence.

8.
J Org Chem ; 81(19): 8977-8987, 2016 10 07.
Article in English | MEDLINE | ID: mdl-27603232

ABSTRACT

Binary pseudorotaxane formation between an aza crown derivative as host (H) and two different imidazolium derivatives as guests (G1 and G2) have been studied in detail by NMR (1H NMR, 2D NOESY), optical (steady state electronic and emission spectroscopy), and mass spectroscopy. Binding stoichiometry (1:1), association constant for the respective [2]pseudorotaxane formation (KaH.G1 = (2.61 ± 0.015) × 103 M-1 and KaH.G2 = (1.27 ± 0.16) × 103 M-1), and associated thermodynamic parameters are also evaluated based on isothermal titration calorimetric (ITC) studies. FRET based luminescence ON responses are observed on formation of the binary pseudorotaxane (H.G1 and H.G2) in a nonpolar medium like dichloromethane. The thermodynamic feasibility of such an energy transfer process is also examined. The higher affinity of H and 18-crown-6 toward K+, as compared to those toward G1 or G2, and the reversibility in the host-guest binding process are utilized in demonstrating the self-sorting phenomena with associated changes in luminescence responses that could be correlated for Boolean operators like YES, INHIBIT, OR, and AND gates.

9.
J Am Chem Soc ; 138(35): 11113-6, 2016 09 07.
Article in English | MEDLINE | ID: mdl-27517868

ABSTRACT

The helical handedness in achiral self-assemblies is mostly complex due to spontaneous symmetry breaking or kinetically controlled random assembly formation. Here an attempt has been made to address this issue through chiral anion exchange. A new class of cationic achiral C3-symmetric gelator devoid of any conventional gelation assisting functional units is found to form both right- and left-handed helical structures. A chiral counteranion exchange-assisted approach is successfully introduced to control the chirality sign and thereby to obtain preferred homochiral assemblies. Formation of anion-assisted chiral assembly was confirmed by circular dichroism (CD) spectroscopy, microscopic images, and crystal structure. The X-ray crystal structure reveals the construction of helical assemblies with opposite handedness for (+)- and (-)-chiral anion reformed gelators. The appropriate counteranion driven ion-pair-assisted hydrogen-bonding interactions are found responsible for the helical bias control in this C3-symmetric gelator.

10.
J Org Chem ; 81(2): 512-21, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26649441

ABSTRACT

A newly synthesized triphenylamine derivative (1Cl3) shows significant differences in inclusion complex formation with two different macrocyclic hosts, cucurbit[7]uril (CB[7]) and ß-cyclodextrin (ß-CD). Detailed investigations by NMR spectroscopy reveal that CB[7] forms a 1:3 host-guest complex ([1·3{CB[7]}]Cl3) in which three arms of 1Cl3 are bound to three host molecules. On the other hand, ß-CD forms a dynamic 1:1 inclusion complex ([1·{ß-CD}]Cl3) by binding to only one of the three arms of 1Cl3 at a given time. The formation of a 1:1 host-guest complex with ß-CD and 1:3 host-guest complex with CB[7] was also confirmed from the results of the isothermal titration calorimetric studies. Interestingly, 1Cl3 exhibits a rare dual emission property in solution at room temperature with the lower and higher energy bands arising from a locally excited state and an intramolecular charge-transfer transition, respectively. The difference in inclusion complex formation behavior of 1Cl3 with the two macrocyclic hosts results in the stabilization of different emission states in the two inclusion complexes. The fundamental difference in the electrostatic surface potentials, cavity polarities, and shapes of the two macrocyclic hosts could account for the formation of the different inclusion complexes with distinct luminescence responses.

11.
Chem Commun (Camb) ; 51(89): 16115-8, 2015 Nov 18.
Article in English | MEDLINE | ID: mdl-26392327

ABSTRACT

Molecular fluorophores based on N,C-chelate, four-coordinate organoborons exhibit tunable solid-state emission colors that cover the whole visible region from blue to red. The emission color can be tuned through the substituents on either quinolines or the boron center.


Subject(s)
Boron/chemistry , Carbon/chemistry , Chelating Agents/chemistry , Nitrogen/chemistry , Organic Chemicals/chemistry , Color , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Photochemistry
12.
J Phys Chem B ; 119(41): 13018-26, 2015 Oct 15.
Article in English | MEDLINE | ID: mdl-26390369

ABSTRACT

A new rhodamine-based reagent (L1), trapped inside the micellar structure of biologically benign Triton-X 100, could be used for specific recognition of Cr(III) in aqueous buffer medium having physiological pH. This visible light excitable reagent on selective binding to Cr(III) resulted in a strong fluorescence turn-on response with a maximum at ∼583 nm and tail of that luminescence band extended until 650 nm, an optical response that is desired for avoiding the cellular autofluorescence. Interference studies confirm that other metal ions do not interfere with the detection process of Cr(III) in aqueous buffer medium having pH 7.2. To examine the nature of binding of Cr(III) to L1, various spectroscopic studies are performed with the model reagent L2, which tend to support Cr(III)-η(2)-olefin π-interactions involving two olefin bonds in molecular probe L1. Computational studies are also performed with another model reagent LM to examine the possibility of such Cr(III)-η(2)-olefin π-interactions. Presumably, polar functional groups of the model reagent LM upon coordination to the Cr(III) center effectively reduce the formal charge on the metal ion and this is further substantiated by results of the theoretical studies. This assembly is found to be cell membrane permeable and shows insignificant toxicity toward live colon cancer cells (Hct116). Confocal laser scanning microscopic studies further revealed that the reagent L1 could be used as an imaging reagent for detection of cellular uptake of Cr(III) in pure aqueous buffer medium by Hct116 cells. Examples of a specific reagent for paramagnetic Cr(III) with luminescence ON response are scanty in the contemporary literature. This ligand design helped us in achieving the turn on response by utilizing the conversion from spirolactam to an acyclic xanthene form on coordination to Cr(III).


Subject(s)
Chromium/chemistry , Cell Line , Chromium/metabolism , Humans , Magnetic Resonance Spectroscopy , Spectrometry, Mass, Electrospray Ionization , Spectrophotometry, Infrared
13.
Chem Commun (Camb) ; 51(11): 2130-3, 2015 Feb 07.
Article in English | MEDLINE | ID: mdl-25539401

ABSTRACT

A unique example of an ESIPT coupled AIEE process, associated with a single molecule (1), is utilized for generating multiple luminescent colors (blue-green-white-yellow). The J-aggregated state of 1 forms a luminescent gel in THF and this luminescent property is retained even in the solid state.

14.
J Phys Chem A ; 118(14): 2656-66, 2014 Apr 10.
Article in English | MEDLINE | ID: mdl-24646313

ABSTRACT

Two new reagents, having similar spatial arrangements for hydrogen atoms of the active methylene functionalities, were synthesized and interactions of such reagents with different anionic analytes were studied using electronic spectroscopy as well as by using (1)H and (31)P NMR spectroscopic methods. Experimental studies revealed that these two reagents showed preference for binding to F(-) and OAc(-). Detailed theoretical studies along with the above-mentioned spectroscopic studies were carried out to understand the contribution of the positively charged phosphonium ion, along with methylene functionality, in achieving the observed preference of these two receptors for binding to F(-) and OAc(-). Observed differences in the binding affinities of these two reagents toward fluoride and acetate ions also reflected the role of acidity of such methylene hydrogen atoms in controlling the efficiencies of the hydrogen bonding in anion-Hmethylene interactions. Hydrogen bonding interactions at lower concentrations of these two anionic analytes and deprotonation equilibrium at higher concentration were observed with associated electronic spectral changes as well as visually detectable change in solution color, an observation that is generally common for other strong hydrogen bond donor functionalities like urea and thiourea. DFT calculations performed with the M06/6-31+G**//M05-2X/6-31G* level of theory showed that F(-) binds more strongly than OAc(-) with the reagent molecules. The deprotonation of methylene hydrogen atom of receptors with F(-) ion was observed computationally. The metal complex as reagent showed even stronger binding energies with these analytes, which corroborated the experimental results.


Subject(s)
Hydrogen/chemistry , Methane/analogs & derivatives , Quantum Theory , Anions/chemistry , Hydrogen Bonding , Methane/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...