Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bull Math Biol ; 85(7): 55, 2023 05 19.
Article in English | MEDLINE | ID: mdl-37208444

ABSTRACT

The developing world has been facing a significant health issue due to cholera as an endemic communicable disease. Lusaka was Zambia's worst affected province, with 5414 reported cases of cholera during the outbreak from late October 2017 to May 12, 2018. To explore the epidemiological characteristics associated with the outbreak, we fitted weekly reported cholera cases with a compartmental disease model that incorporates two transmission routes, namely environment-to-human and human-to-human. Estimates of the basic reproduction number show that both transmission modes contributed almost equally during the first wave. In contrast, the environment-to-human transmission appears to be mostly dominating factor for the second wave. Our study finds that a massive abundance of environmental vibrio's with a huge reduction in water sanitation efficacy triggered the secondary wave. To estimate the expected time to extinction (ETE) of cholera, we formulate the stochastic version of our model and find that cholera can last up to 6.5-7 years in Lusaka if any further outbreak occurs at a later time. Results indicate that a considerable amount of attention is to be paid to sanitation and vaccination programs in order to reduce the severity of the disease and to eradicate cholera from the community in Lusaka.


Subject(s)
Cholera , Humans , Cholera/epidemiology , Cholera/prevention & control , Zambia/epidemiology , Mathematical Concepts , Models, Biological , Disease Outbreaks
2.
J R Soc Interface ; 20(202): 20230036, 2023 05.
Article in English | MEDLINE | ID: mdl-37194270

ABSTRACT

Frequent emergence of communicable diseases is a major concern worldwide. Lack of sufficient resources to mitigate the disease burden makes the situation even more challenging for lower-income countries. Hence, strategy development for disease eradication and optimal management of the social and economic burden has garnered a lot of attention in recent years. In this context, we quantify the optimal fraction of resources that can be allocated to two major intervention measures, namely reduction of disease transmission and improvement of healthcare infrastructure. Our results demonstrate that the effectiveness of each of the interventions has a significant impact on the optimal resource allocation in both long-term disease dynamics and outbreak scenarios. The optimal allocation strategy for long-term dynamics exhibits non-monotonic behaviour with respect to the effectiveness of interventions, which differs from the more intuitive strategy recommended in the case of outbreaks. Further, our results indicate that the relationship between investment in interventions and the corresponding increase in patient recovery rate or decrease in disease transmission rate plays a decisive role in determining optimal strategies. Intervention programmes with decreasing returns promote the necessity for resource sharing. Our study provides fundamental insights into determining the best response strategy when controlling epidemics in resource-constrained situations.


Subject(s)
Communicable Diseases , Epidemics , Humans , Epidemics/prevention & control , Communicable Diseases/epidemiology , Disease Outbreaks/prevention & control , Resource Allocation
SELECTION OF CITATIONS
SEARCH DETAIL
...