Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Small ; : e2403512, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39011973

ABSTRACT

As sustainable and eco-friendly replacements to conventional paper, rewritable paper is a very attractive alternative for communication, information circulation, and storage. Development is made for rewritable paper using chromogenic materials that change its color in presence of external stimuli. However, the new techniques have faced several major challenges including feasible operational method, eco-friendly approach. Herein, a simple, convenient, and eco-friendly strategy is described for the preparation of rewritable paper substrate, and multi colored ink for efficient use in writing, painting or printing purpose. In addition, writing with "invisible ink" on the rewritable paper can be realized for potential anti-counterfeiting application. The written, painted, or printed information on the paper substrate can be easily erased using an aqueous solution. Thus, the original paper can be retrieved and the paper substrate can be reused multiple times. Besides, the written or printed information can be retained for a prolonged time at ambient conditions. Overall, this approach shows the rewritable paper as a prototype of multicolor writing/painting application, offering a sustainable solution for reducing paper waste and promoting environmental stewardship.

2.
Langmuir ; 39(24): 8450-8462, 2023 Jun 20.
Article in English | MEDLINE | ID: mdl-37279383

ABSTRACT

Developing a solid organic emitter based on an oxazaborinine complex with improved photophysical characteristics has become essential to fulfilling the rising need for optical and electrochemical technology. Two oxazaborinine complexes (TNB (a tri-naphthalene boron complex) and DNB (a di-naphthalene boron complex)) decorated with naphthalene and triphenylamine have been developed, which show emission in the red light region in the solid phase. Their effectiveness as asymmetric supercapacitor electrodes in aqueous electrolytes is also being studied. Polynapthaldimine-substituted DNI (di-naphthalene imine) and TNI (tri-naphthalene imine) have been initially synthesized and converted to a N,O-linked boron complex. TNB in solids (λem 660 nm) and the polydimethylsiloxane (PDMS) composite (λem 632 nm) emit pure red light. The optimized structure has been generated, and the HOMO-LUMO energy was calculated with the help of density functional theory (DFT). Due to the higher conjugation effect and lower HOMO-LUMO energy difference, TNB could be used as a supercapacitor electrode. In a three-electrode configuration, TNB has a maximum specific capacitance of 896.25 F/g. Furthermore, an asymmetric supercapacitor device (ASC) was fabricated in an aqueous electrolyte using TNB as a positive electrode having a high specific capacitance of 155 F/g. Even in an aqueous electrolyte, the ASC device reached the operating potential window of 0 to 1.4 V with an enhanced energy density of 42.19 W h/kg and ∼96% cyclic stability after 10 000 cycles. The reported oxazaborinine complex and its electrochemical efficiency in aqueous electrolytes make it ideal for supercapacitor applications and directly impact the development of advanced electrodes for next-generation supercapacitors.

3.
Biomacromolecules ; 24(1): 377-386, 2023 01 09.
Article in English | MEDLINE | ID: mdl-36562759

ABSTRACT

Low-molecular-weight hydrogels are attractive scaffolds for drug delivery applications because of their modular and facile preparation starting from inexpensive molecular components. The molecular design of the hydrogelator results in a commitment to a particular release strategy, where either noncovalent or covalent bonding of the drug molecule dictates its rate and mechanism. Herein, we demonstrate an alternative approach using a reaction-coupled gelator to tune drug release in a facile and user-defined manner by altering the reaction pathway of the low-molecular-weight gelator (LMWG) and drug components through an acylhydrazone-bond-forming reaction. We show that an off-the-shelf drug with a reactive handle, doxorubicin, can be covalently bound to the gelator through its ketone moiety when the addition of the aldehyde component is delayed from 0 to 24 h, or noncovalently bound with its addition at 0 h. We also examine the use of an l-histidine methyl ester catalyst to prepare the drug-loaded hydrogels under physiological conditions. Fitting of the drug release profiles with the Korsmeyer-Peppas model corroborates a switch in the mode of release consistent with the reaction pathway taken: increased covalent ligation drives a transition from a Fickian to a semi-Fickian mode in the second stage of release with a decreased rate. Sustained release of doxorubicin from the reaction-coupled hydrogel is further confirmed in an MTT toxicity assay with MCF-7 breast cancer cells. We demonstrate the modularity and ease of the reaction-coupled approach to prepare drug-loaded self-assembled hydrogels in situ with tunable mechanics and drug release profiles that may find eventual applications in macroscale drug delivery.


Subject(s)
Drug Delivery Systems , Hydrogels , Drug Liberation , Doxorubicin/pharmacology
4.
Commun Chem ; 5(1): 115, 2022 Sep 26.
Article in English | MEDLINE | ID: mdl-36697818

ABSTRACT

In living organisms, enzyme catalysis takes place in aqueous media with extraordinary spatiotemporal control and precision. The mechanistic knowledge of enzyme catalysis and related approaches of creating a suitable microenvironment for efficient chemical transformations have been an important source of inspiration for the design of biomimetic artificial catalysts. However, in "nature-like" environments, it has proven difficult for artificial catalysts to promote effective chemical transformations. Besides, control over reaction rate and selectivity are important for smart application purposes. These can be achieved via incorporation of stimuli-responsive features into the structure of smart catalytic systems. Here, we summarize such catalytic systems whose activity can be switched 'on' or 'off' by the application of stimuli in aqueous environments. We describe the switchable catalytic systems capable of performing organic transformations with classification in accordance to the stimulating agent. Switchable catalytic activity in aqueous environments provides new possibilities for the development of smart materials for biomedicine and chemical biology. Moreover, engineering of aqueous catalytic systems can be expected to grow in the coming years with a further broadening of its application to diverse fields.

5.
Top Curr Chem (Cham) ; 380(1): 3, 2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34812965

ABSTRACT

Nature produces materials using available molecular building blocks following a bottom-up approach. These materials are formed with great precision and flexibility in a controlled manner. This approach offers the inspiration for manufacturing new artificial materials and devices. Synthetic artificial materials can find many important applications ranging from personalized therapeutics to solutions for environmental problems. Among these materials, responsive synthetic materials are capable of changing their structure and/or properties in response to external stimuli, and hence are termed "smart" materials. Herein, this review focuses on alginate-based smart materials and their stimuli-responsive preparation, fragmentation, and applications in diverse fields from drug delivery and tissue engineering to water purification and environmental remediation. In the first part of this report, we review stimuli-induced preparation of alginate-based materials. Stimuli-triggered decomposition of alginate materials in a controlled fashion is documented in the second part, followed by the application of smart alginate materials in diverse fields. Because of their biocompatibility, easy accessibility, and simple techniques of material formation, alginates can provide solutions for several present and future problems of humankind. However, new research is needed for novel alginate-based materials with new functionalities and well-defined properties for targeted applications.


Subject(s)
Alginates , Smart Materials , Biocompatible Materials , Hydrogels , Tissue Engineering
6.
J Am Chem Soc ; 141(7): 2847-2851, 2019 02 20.
Article in English | MEDLINE | ID: mdl-30563317

ABSTRACT

Hierarchical compartmentalization through the bottom-up approach is ubiquitous in living cells but remains a formidable task in synthetic systems. Here we report on hierarchically compartmentalized supramolecular gels that are spontaneously formed by multilevel self-sorting. Two types of molecular gelators are formed in situ from nonassembling building blocks and self-assemble into distinct gel fibers through a kinetic self-sorting process; interestingly, these distinct fibers further self-sort into separated microdomains, leading to microscale compartmentalized gel networks. Such spontaneously multilevel self-sorting systems provide a "bottom-up" approach toward hierarchically structured functional materials and may play a role in intracellular organization.

7.
Chem Sci ; 9(27): 5999-6005, 2018 Jul 21.
Article in English | MEDLINE | ID: mdl-30079215

ABSTRACT

Reminiscent of signal transduction in biological systems, artificial catalysts whose activity can be controlled by physical or chemical signals would be of high interest in the design of chemical systems that can respond to their environment. Self-immolative chemistry offers a generic method for the development of catalysts that can be activated by different signals. To demonstrate the versatility of that concept, we synthesized organocatalysts that can be activated by three different signals and that can be used to control two different reactions. In this way the organocatalyst proline is designed as a pro-catalyst that is activated either by the chemical signal H2O2, by light or by the enzyme penicillin acylase. The pro-catalysts were used to exert temporal control over the rate of an aldol reaction and a Michael reaction.

8.
Soft Matter ; 14(23): 4852-4859, 2018 Jun 13.
Article in English | MEDLINE | ID: mdl-29845136

ABSTRACT

Dissipative self-assembly is a process in which energy-consuming chemical reaction networks drive the assembly of molecules. Prominent examples from biology include the GTP-fueled microtubule and ATP-driven actin assembly. Pattern formation and oscillatory behavior are some of the unique properties of the emerging assemblies. While artificial counterparts exist, researchers have not observed such complex responses. One reason for the missing complexity is the lack of feedback mechanisms of the assemblies on their chemical reaction network. In this work, we describe the dissipative self-assembly of colloids that protect the hydrolysis of their building blocks. The mechanism of inhibition is generalized and explored for other building blocks. We show that we can tune the level of inhibition by the assemblies. Finally, we show that the robustness of the assemblies towards starvation is affected by the degree of inhibition.

9.
Nat Commun ; 8(1): 879, 2017 10 12.
Article in English | MEDLINE | ID: mdl-29026083

ABSTRACT

Cells can react to their environment by changing the activity of enzymes in response to specific chemical signals. Artificial catalysts capable of being activated by chemical signals are rare, but of interest for creating autonomously responsive materials. We present an organocatalyst that is activated by a chemical signal, enabling temporal control over reaction rates and the formation of materials. Using self-immolative chemistry, we design a deactivated aniline organocatalyst that is activated by the chemical signal hydrogen peroxide and catalyses hydrazone formation. Upon activation of the catalyst, the rate of hydrazone formation increases 10-fold almost instantly. The responsive organocatalyst enables temporal control over the formation of gels featuring hydrazone bonds. The generic design should enable the use of a large range of triggers and organocatalysts, and appears a promising method for the introduction of signal response in materials, constituting a first step towards achieving communication between artificial chemical systems.Enzymes regulated by chemical signals are common in biology, but few such artificial catalysts exist. Here, the authors design an aniline catalyst that, when activated by a chemical trigger, catalyses formation of hydrazone-based gels, demonstrating signal response in a soft material.


Subject(s)
Aniline Compounds/chemistry , Hydrazones/chemical synthesis , Hydrogen Peroxide/chemistry , Catalysis/drug effects , Models, Molecular , Molecular Structure , Proof of Concept Study
10.
Nat Commun ; 8: 16128, 2017 06 30.
Article in English | MEDLINE | ID: mdl-28665410

ABSTRACT

This corrects the article DOI: 10.1038/ncomms15317.

11.
Nat Commun ; 8: 15317, 2017 07 05.
Article in English | MEDLINE | ID: mdl-28580948

ABSTRACT

Self-assembly provides access to a variety of molecular materials, yet spatial control over structure formation remains difficult to achieve. Here we show how reaction-diffusion (RD) can be coupled to a molecular self-assembly process to generate macroscopic free-standing objects with control over shape, size, and functionality. In RD, two or more reactants diffuse from different positions to give rise to spatially defined structures on reaction. We demonstrate that RD can be used to locally control formation and self-assembly of hydrazone molecular gelators from their non-assembling precursors, leading to soft, free-standing hydrogel objects with sizes ranging from several hundred micrometres up to centimeters. Different chemical functionalities and gradients can easily be integrated in the hydrogel objects by using different reactants. Our methodology, together with the vast range of organic reactions and self-assembling building blocks, provides a general approach towards the programmed fabrication of soft microscale objects with controlled functionality and shape.

12.
Adv Mater ; 29(12)2017 Mar.
Article in English | MEDLINE | ID: mdl-28117500

ABSTRACT

The use of polymeric crosslinkers is an attractive method to modify the mechanical properties of supramolecular materials, but their effects on the self-assembly of the underlying supramolecular polymer networks are poorly understood. Modulation of the gelation pathway of a reaction-coupled low molecular weight hydrogelator is demonstrated using (bio)polymeric crosslinkers of disparate physicochemical identities, providing a handle for control over materials properties.

13.
Chemistry ; 23(9): 2018-2021, 2017 Feb 10.
Article in English | MEDLINE | ID: mdl-28035778

ABSTRACT

Self-assembly of biomolecules catalytically controls the formation of natural supramolecular structures, giving highly ordered complex materials. Such desirable hybrid systems are very difficult to design and construct synthetically. A hybrid double-network hydrogel with a maximum storage modulus (G'max ) of up to 55 kPa can be synthesized by using a self-assembled hydrogel that catalyses the formation of another kinetically arrested hydrogel network. Tuning of the catalytic efficiency of the first network allowed spatiotemporal control over the evolution of the second network and the resulting mechanical properties. The distribution of active catalytic sites was optimal for catalytic fibres prepared at the minimum gelation concentration (MGC) to give the double-network hydrogel with highest storage modulus. This approach could be very useful in preparing complex hierarchical structures with tailor-made properties.

14.
J Am Chem Soc ; 138(28): 8670-3, 2016 07 20.
Article in English | MEDLINE | ID: mdl-27359373

ABSTRACT

In this contribution we show that biological membranes can catalyze the formation of supramolecular hydrogel networks. Negatively charged lipid membranes can generate a local proton gradient, accelerating the acid-catalyzed formation of hydrazone-based supramolecular gelators near the membrane. Synthetic lipid membranes can be used to tune the physical properties of the resulting multicomponent gels as a function of lipid concentration. Moreover, the catalytic activity of lipid membranes and the formation of gel networks around these supramolecular structures are controlled by the charge and phase behavior of the lipid molecules. Finally, we show that the insights obtained from synthetic membranes can be translated to biological membranes, enabling the formation of gel fibers on living HeLa cells.


Subject(s)
Cell Membrane/chemistry , Cell Membrane/metabolism , Hydrogel, Polyethylene Glycol Dimethacrylate/chemistry , Catalysis , HeLa Cells , Humans , Models, Molecular , Molecular Conformation , Phosphatidylglycerols/chemistry , Phosphatidylglycerols/metabolism
15.
Acc Chem Res ; 49(7): 1440-7, 2016 07 19.
Article in English | MEDLINE | ID: mdl-27314682

ABSTRACT

One often thinks of catalysts as chemical tools to accelerate a reaction or to have a reaction run under more benign conditions. As such, catalysis has a role to play in the chemical industry and in lab scale synthesis that is not to be underestimated. Still, the role of catalysis in living systems (cells, organisms) is much more extensive, ranging from the formation and breakdown of small molecules and biopolymers to controlling signal transduction cascades and feedback processes, motility, and mechanical action. Such phenomena are only recently starting to receive attention in synthetic materials and chemical systems. "Smart" soft materials could find many important applications ranging from personalized therapeutics to soft robotics to name but a few. Until recently, approaches to control the properties of such materials were largely dominated by thermodynamics, for instance, looking at phase behavior and interaction strength. However, kinetics plays a large role in determining the behavior of such soft materials, for instance, in the formation of kinetically trapped (metastable) states or the dynamics of component exchange. As catalysts can change the rate of a chemical reaction, catalysis could be used to control the formation, dynamics, and fate of supramolecular structures when the molecules making up these structures contain chemical bonds whose formation or exchange are susceptible to catalysis. In this Account, we describe our efforts to use synthetic catalysts to control the properties of supramolecular hydrogels. Building on the concept of synthesizing the assembling molecule in the self-assembly medium from nonassembling precursors, we will introduce the use of catalysis to change the kinetics of assembler formation and thereby the properties of the resulting material. In particular, we will focus on the synthesis of supramolecular hydrogels where the use of a catalyst provides access to gel materials with vastly different appearance and mechanical properties or controls localized gel formation and the growth of gel objects. As such, catalysis will be applied to create molecular materials that exist outside of chemical equilibrium. In all, using catalysts to control the properties of soft materials constitutes a new avenue for catalysis far beyond the traditional use in industrial and lab scale synthesis.

16.
J Mater Chem B ; 4(5): 852-858, 2016 Feb 07.
Article in English | MEDLINE | ID: mdl-32263157

ABSTRACT

In recent years, we have developed a low molecular weight hydrogelator system that is formed in situ under ambient conditions through catalysed hydrazone formation between two individually non-gelating components. In this contribution, we describe a molecular toolbox based on this system which allows us to (1) investigate the limits of gel formation and fine-tuning of their bulk properties, (2) introduce multicolour fluorescent probes in an easy fashion to enable high-resolution imaging, and (3) chemically modify the supramolecular gel fibres through click and non-covalent chemistry, to expand the functionality of the resultant materials. In this paper we show preliminary applications of this toolbox, enabling covalent and non-covalent functionalisation of the gel network with proteins and multicolour imaging of hydrogel networks with embedded mammalian cells and their substructures. Overall, the results show that the toolbox allows for on demand gel network visualisation and functionalisation, enabling a wealth of applications in the areas of chemical biology and smart materials.

17.
J Fluoresc ; 25(3): 529-39, 2015 May.
Article in English | MEDLINE | ID: mdl-25804831

ABSTRACT

Porphyrin monomers, 5,15-bis(4-(2,5,8,11-tetraoxatridecan-13-yloxy)phenyl)-10,20-bis(3-iodophenyl)porphyrin zinc (5a) and 5,10-bis(4-(2,5,8,11-tetraoxatridecan-13-yloxy)phenyl)-15,20-bis(3-iodophenyl)porphyrin zinc (5b), and their oligomers 6a and 6b were synthesized and characterized. The titration experiment of the monomers was carried out in THF by changing the solution percent of water. The optical properties (UV-vis and fluorescence spectra) of the monomers that possess slightly red-shifted optical spectra in water compared to the spectra obtained in THF are reported. The newly prepared porphyrin constructs were also mixed with SWCNTs to generate noncovalent hybrid materials.

18.
Angew Chem Int Ed Engl ; 54(3): 998-1001, 2015 Jan 12.
Article in English | MEDLINE | ID: mdl-25385283

ABSTRACT

Spatial control over the self-assembly of synthetic molecular fibers through the use of light-switchable catalysts can lead to the controlled formation of micropatterns made up of hydrogel structures. A photochromic switch, capable of reversibly releasing a proton upon irradiation, can act as a catalyst for in situ chemical bond formation between otherwise soluble building blocks, thereby leading to fiber formation and gelation in water. The use of a photoswitchable catalyst allows control over the distribution as well as the mechanical properties of the hydrogel material. By using homemade photomasks, spatially structured hydrogels were formed starting from bulk solutions of small molecule gelator precursors through light-triggered local catalyst activation.

19.
Article in English | MEDLINE | ID: mdl-24032947

ABSTRACT

In a Lagrangian fluid approach, an explicit method has been presented previously to obtain an exact nonstationary magnetosonic-type wave solution in compressible magnetized plasmas of arbitrary resistivity showing competition among hydrodynamic convection, magnetic field diffusion, and dispersion [Chakrabarti et al., Phys. Rev. Lett. 106, 145003 (2011)]. The purpose of the present work is twofold: it serves (i) to describe the physical and mathematical background of the involved magnetosonic wave dynamics in more detail, as proposed by our original Letter, and (ii) to present an alternative approach, which utilizes the Lagrangian mass variable as a new spatial coordinate [Schamel, Phys. Rep. 392, 279 (2004)]. The obtained exact nonlinear wave solutions confirm the correctness of our previous results, indicating a collapse of the magnetic field irrespective of the presence of dispersion and resistivity. The mean plasma density, on the other hand, is less singular, showing collapse only when dispersive effects are negligible. These results may contribute to our understanding of the generation of strongly localized magnetic fields (and currents) in plasmas, and they are expected to be of special importance in the astrophysical context of magnetic star formation.

20.
Phys Rev Lett ; 110(21): 215002, 2013 May 24.
Article in English | MEDLINE | ID: mdl-23745888

ABSTRACT

We study the wave-breaking phenomenon of relativistic upper-hybrid (UH) oscillations in a cold magnetoplasma. For our purposes, we use the electron continuity and relativistic electron momentum equations, together with Maxwell's equations, as well as introduce Lagrangian coordinates to obtain an exact nonstationary solution of the governing nonlinear equations. It is found that bursts in the electron density appear in a finite time as a result of relativistic electron mass variations in the UH electric field, indicating a phase mixing or breaking of relativistic UH oscillations. We highlight the relevance of our investigation of the UH wave phase-mixing or UH wave-breaking process to electron energization and plasma particle heating.

SELECTION OF CITATIONS
SEARCH DETAIL
...