Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Analyst ; 2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39037712

ABSTRACT

This research paper investigates the electrocatalytic mechanisms and ultra-trace detection abilities of uranyl ions (UO22+) using palladium nanoparticles (PdNPs) electrodeposited in deep eutectic solvents (DESs). The unique properties of DESs, such as their adjustable viscosity and ionic conductivity, offer an advantageous and environmentally friendly medium for Pd nanoparticle electrodeposition, resulting in highly active and stable electrocatalysts. Various characterization techniques, including scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD), were used to examine the morphology, size distribution, and crystallographic structure of the Pd nanoparticles. Electrochemical tests revealed that the Pd-modified electrodes show exceptional electrocatalytic activity and current sensitivity towards uranyl ions, with detection limits as low as 3.4 nM. Density functional theory (DFT) calculations were conducted to elucidate the mechanism of the electrocatalytic reduction of UO22+ by the PdNPs, providing a plausible explanation for the high sensitivity of PdNPs in detecting uranyl ions based on the calculated structural parameters and reaction energetics. This study underscores the potential of Pd nanoparticles electrodeposited in DESs as a promising method for sensitive uranyl ion detection, contributing to advancements in environmental monitoring and nuclear safety.

2.
Phys Rev Lett ; 127(11): 113001, 2021 Sep 10.
Article in English | MEDLINE | ID: mdl-34558915

ABSTRACT

We observe experimentally the spontaneous formation of star-shaped surface patterns in driven Bose-Einstein condensates. Two-dimensional star-shaped patterns with l-fold symmetry, ranging from quadrupole (l=2) to heptagon modes (l=7), are parametrically excited by modulating the scattering length near the Feshbach resonance. An effective Mathieu equation and Floquet analysis are utilized, relating the instability conditions to the dispersion of the surface modes in a trapped superfluid. Identifying the resonant frequencies of the patterns, we precisely measure the dispersion relation of the collective excitations. The oscillation amplitude of the surface excitations increases exponentially during the modulation. We find that only the l=6 mode is unstable due to its emergent coupling with the dipole motion of the cloud. Our experimental results are in excellent agreement with the mean-field framework. Our work opens a new pathway for generating higher-lying collective excitations with applications, such as the probing of exotic properties of quantum fluids and providing a generation mechanism of quantum turbulence.

3.
Inorg Chem ; 54(21): 10153-62, 2015 Nov 02.
Article in English | MEDLINE | ID: mdl-26444245

ABSTRACT

Addition of 1,4-benezenedithiol and 4,4'-biphenyldithiol to M(OTf)2 (M = cis-[Pt(PEt3)2](2+) or cis-[Pd(dppe)](2+)) (dppe = 1,2-bis(diphenylphosphino)ethane) gave self-assembled tetranuclear complexes [M2{S(C6H4)nS}]2(OTf)4 (n = 1, 2). The same reaction with 1,4-benezenedimethanethiol yielded octanuclear supramolecular coordination complexes (SCC) [M2{SCH2C6H4CH2S}]4(OTf)8. These complexes were characterized by NMR, mass, and UV-vis spectroscopies, cyclic voltammetry, as well as density functional theory studies and represent the first examples of SCCs constructed by thiolate groups and square-planar metal ions. The rectangular shape of tetranuclear complexes and square shape of octanuclear complex are confirmed by single-crystal structures and computational studies. The palladium complexes showed excellent catalytic activity in Suzuki C-C cross-coupling reactions with high turnover numbers (2 × 10(7)), even with low catalyst loading.

4.
IEEE Trans Syst Man Cybern B Cybern ; 42(4): 1288-93, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22411025

ABSTRACT

This paper investigates the chaotic characteristics in the dynamics of an aggregating swarm model. The range of the parameters of the swarm model is determined for which chaos exists in the dynamics. The trajectories of the individuals are simulated, and the stable, limit cyclic, and chaotic behaviors are demonstrated. The existence of chaos in the swarm is determined by the maximum Lyapunov exponent. The computer simulation supports the results obtained by theoretical analysis.

5.
Carbohydr Polym ; 89(4): 1159-65, 2012 Aug 01.
Article in English | MEDLINE | ID: mdl-24750927

ABSTRACT

A simple one-step rapid synthetic route is described for the preparation of silver nanoparticles by reduction of silver nitrate (AgNO3) using aqueous dextran solution which acts as both reducing and capping agent. The formation of silver nanoparticles is assured by characterization with UV-vis spectroscopy, atomic force microscopy (AFM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). The absorbance of the silver nanoparticles is observed at 423 nm. The AFM image clearly shows the surface morphology of the well-dispersed silver nanoparticles with size range of 10-60 nm. TEM images show that the nanoparticles are spherical in shape with ∼5-10 nm dimensions. The crystallinity of Ag nanoparticles is assured by XRD analysis. The antimicrobial activity of as synthesized silver nanoparticles is tested against the bacteria, Bacillus subtilis, Bacillus cereus, Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. The bacterial growth is inhibited by gradual reduction of the concentration of the silver nanoparticles.


Subject(s)
Anti-Infective Agents , Bacteria/growth & development , Metal Nanoparticles/chemistry , Silver , Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Metal Nanoparticles/ultrastructure , Particle Size , Silver/chemistry , Silver/pharmacology , Silver Nitrate/chemistry
6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 83(2 Pt 1): 021112, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21405823

ABSTRACT

We have presented a first-principle theory-based derivation of an exact expression for the solvent number-dependent electron-detachment energy of a solvated species in the thermodynamic limit. We also propose a generalized equation bridging the electron detachment energies for small and infinitely large clusters, thus providing a new route to calculate the ionization potential of a negatively charged ion from the electron-detachment energies of its stable hydrated clusters. Most importantly, it has the ability to predict the instability range of microhydrated anions. The calculated results for the ionization potential for a number of ions are found to be in good agreement with the available experimental results, and the predicted instability range for the doubly charged anions SO4²â» and C2O4²â» is also consistent with experimental and ab initio results.


Subject(s)
Anions , Biopolymers/chemistry , Models, Chemical , Solvents/chemistry , Water/chemistry , Computer Simulation
7.
J Phys Chem A ; 115(15): 3559-64, 2011 Apr 21.
Article in English | MEDLINE | ID: mdl-21443212

ABSTRACT

A working methodology to generate theoretical IR spectra following ab initio electronic structure methods is reported. Theoretical IR spectra of Cl(2)(•-)·nH(2)O clusters (n = 1-5) are generated as a case study. Excellent agreement between the calculated and the reported experimental IR spectra based on size-selected spectroscopy is observed. It is shown that uniform scaling of calculated harmonic frequencies of these hydrated clusters fail to produce accurate IR spectra. Two different scaling factors in two different regions of O-H stretching of solvent water molecules are needed to account for the anharmonic contribution. This observation is also true for Br(2)(•-)·nH(2)O and I(2)(•-)·nH(2)O systems.


Subject(s)
Chlorides/chemistry , Electrons , Quantum Theory , Free Radicals/chemistry , Molecular Structure , Spectrophotometry, Infrared
8.
J Phys Chem A ; 114(2): 721-4, 2010 Jan 21.
Article in English | MEDLINE | ID: mdl-19842674

ABSTRACT

UV-vis spectral properties of I(2)(*-).nH(2)O systems are reported based on ab initio quantum chemical calculations. Second order Moller-Plesset perturbation theory is applied for geometry search and time dependent density functional theory is applied to study excited state properties. Relativistic corrections are considered for all the calculations. Geometry search is carried out applying simulated annealing combined with Monte Carlo sampling method. Strong optical absorption band of these hydrated clusters, I(2)(*-).nH(2)O in the UV-vis region is assigned to sigma(g) --> sigma(u)* type valence electron transition in contrast to charge transfer to solvent spectra in I(-).nH(2)O systems. Simulated optical absorption profile of I(2)(*-).8H(2)O system is in excellent agreement with the reported aqueous phase spectrum of iodine dimer radical anion.

9.
J Phys Chem A ; 113(48): 13443-7, 2009 Dec 03.
Article in English | MEDLINE | ID: mdl-19886648

ABSTRACT

Weighted average IR spectra of CO(3)(*-).nH(2)O (n = 1-6) clusters are reported and compared with those of CO(3)(2-).nH(2)O (n = 1-6) clusters based on quantum chemical calculations. Simulated annealing combined with the Monte Carlo sampling method is also applied to locate the global minimum energy structure. It is observed that hydrated clusters of CO(3)(*-) ion having cyclic water networks are the most stable structure in each size of hydrated cluster. IR bands at the lower side of the O-H stretching region of water correspond to single/double hydrogen bonding interaction, and those in the higher side correspond to inter water hydrogen bonding for the lower clusters (n = 2-3). For the tetrahydrated cluster of CO(3)(*-) ion, a complete crossover of the IR spectra in the O-H stretching region occurred. Cyclic water networks having three or four solvent water molecules are characterized by strong peaks at 3550 and 3450 cm(-1). In the case of CO(3)(*-).nH(2)O clusters, O-H stretching bands of all of the solvent water molecules are above 3100 cm(-1) in contrast to that of CO(3)(2-).nH(2)O clusters showing distinctive IR signature. This suggests that size selected hydrated clusters of CO(3)(*-) and CO(3)(2-) ions can easily be distinguished on the basis of their IR spectra.

10.
J Phys Chem B ; 113(31): 10779-91, 2009 Aug 06.
Article in English | MEDLINE | ID: mdl-19594151

ABSTRACT

In this paper, we present spectroscopic signatures of intramolecular charge transfer (ICT) and effects of solvent on the ICT process in 3-(phenylamino)-2-cyclohexen-1-one (PACO), a member of the well-known molecular family, the beta-enaminones. The dual fluorescence in the steady state emission spectra of the molecule in polar solvents indicates the occurrence of ICT, which is further supported by time-resolved studies, using time correlated single photon counting technique with picosecond resolution. To understand the nature of the charge transfer, pH dependent studies of the probe in water were performed, where a quenching of fluorescence was observed even in the presence of very low concentrations of acids. Solvent induced fluorescence quenching was observed in ethanol and methanol. The ICT process was also investigated by quantum chemical calculations. To understand the role of solvents in the ICT process, we have theoretically studied the macroscopic and microscopic solvation of the probe in water. The absorption spectra of the molecule in the gas phase as well as in water were simulated using time dependent density functional theory with cc-pVTZ basis set and self-consistent reaction field theory that models macroscopic solvation. The possibility of microscopic solvation in water was probed theoretically and the formation of 1:3 molecular clusters by PACO with water molecules has been confirmed. Our findings could have a bearing on pH sensing applications of the probe.

11.
J Phys Chem A ; 112(47): 12037-44, 2008 Nov 27.
Article in English | MEDLINE | ID: mdl-18986129

ABSTRACT

Structure, stability, and vibrational IR and Raman spectra of I(2)(*-) x nCO(2) clusters (n = 1-10) are reported based on first-principle electronic structure calculations. Several close-lying minimum energy structures are predicted for these solvated clusters following the quasi Newton-Raphson procedure of geometry optimization. Search strategy based on Monte-Carlo simulated annealing is also applied to find out the global minimum energy structures of these clusters. Successive addition of solvent CO(2) molecules to the negatively charged diatomic solute, I(2)(*-), is fairly symmetrical. Energy parameters of these solvated clusters are calculated following second-order Moller-Plesset perturbation (MP2) as well as coupled cluster theory with 6-311+G(d) set of basis function (I atom is treated with 6-311G(d) set of basis function). The excess electron in these solvated clusters is observed to be localized mainly over the two I atoms. Average interaction energy between the anionic solute, I(2)(*-), and a solvent CO(2) molecule is approximately 129 meV in I(2)(*-) x nCO(2) clusters, and the average interaction energy between two solvent CO(2) molecules is approximately 85 meV in the case of neutral (CO(2))(n) clusters at MP2 level of theory. IR spectra show similar features in all these solvated clusters, depicting a strong band at approximately 2330 cm(-1) for C-O stretching and a weak band at approximately 650 cm(-1) for CO(2) bending modes. Degeneracy of the bending mode of a free solvent CO(2) unit gets lifted when it interacts with the charged solute I(2)(*-) to form a molecular cluster because of the change in structure of solvent CO(2) units. The vibrational band at the bending region of CO(2) in the Raman spectra of these anionic clusters shows a characteristic feature for the formation of I(2)(*-) x nCO(2) clusters showing a Raman band at approximately 650 cm(-1).

12.
J Phys Chem A ; 112(15): 3399-408, 2008 Apr 17.
Article in English | MEDLINE | ID: mdl-18327926

ABSTRACT

A systematic study on the structure and stability of nitrate anion hydrated clusters, NO3(-) x n H2O (n = 1-8) are carried out by applying first principle electronic structure methods. Several possible initial structures are considered for each size cluster to locate equilibrium geometry by applying a correlated hybrid density functional with 6-311++G(d,p) basis function. Three different types of arrangements, namely, symmetrical double hydrogen bonding, single hydrogen bonding and inter-water hydrogen bonding are obtained in these hydrated clusters. A structure having inter-water hydrogen bonding is more stable compared to other arrangements. Surface structures are predicted to be more stable over interior structures. Up to five solvent H2O molecules can stay around solute NO3(-) anion in structures having an inter-water hydrogen-bonded cyclic network. A linear correlation is obtained for weighted average solvent stabilization energy with the size (n) of the hydrated cluster. Distinctly different shifts of IR bands are observed in these hydrated clusters for different kinds of bonding environments of O-H and N=O stretching modes compared to isolated H2O and NO3(-) anion. Weighted average IR spectra are calculated on the basis of statistical population of individual configurations of each size cluster at 150 K.

13.
J Phys Chem A ; 112(4): 744-51, 2008 Jan 31.
Article in English | MEDLINE | ID: mdl-18179186

ABSTRACT

Structure and properties of hydrated clusters of halogen gas, X2.nH2O (X = Cl, Br, and I; n = 1-8) are presented following first principle based electronic structure theory, namely, BHHLYP density functional and second-order Moller-Plesset perturbation (MP2) methods. Several geometrical arrangements are considered as initial guess structures to look for the minimum energy equilibrium structures by applying the 6-311++G(d,p) set of the basis function. Results on X2-water clusters (X = Br and I) suggest that X2 exists as a charge separated ion pair, X+delta-X-delta in the hydrated clusters, X2.nH2O (n > or = 2). Though the optimized structures of Cl2.nH2O clusters look like X2.nH2O (X = Br and I) clusters, Cl2 does not exist as a charge separated ion pair in the presence of solvent water molecules. The calculated interaction energy between X2 and solvent water cluster increases from Cl2.nH2O to I2.nH2O clusters, suggesting solubility of gas-phase I2 in water to be a maximum among these three systems. Static and dynamic polarizabilities of hydrated X2 clusters, X2.nH2O, are calculated and observed to vary linearly with the size (n) of these water clusters with correlation coefficient >0.999. This suggests that the polarizability of the larger size hydrated clusters can be reliably predicted. Static and dynamic polarizabilities of these hydrated clusters grow exponentially with the frequency of an external applied field for a particular size (n) of hydrated cluster.

14.
J Chem Phys ; 129(24): 246101, 2008 Dec 28.
Article in English | MEDLINE | ID: mdl-19123535

ABSTRACT

We report vertical detachment energy (VDE) of I(2) (-)nCO(2) clusters (n=1-8) based on first principle calculations with atomic basis functions. Calculated VDE values of these solvated clusters are in excellent agreement with the reported measured values following photoelectron spectroscopy of size selected I(2) (-)nCO(2) clusters. Bulk VDE of iodine dimer radical anion in solvent CO(2) is predicted as 5.29 eV applying a simple model of extrapolation.

15.
Article in English | MEDLINE | ID: mdl-17451997

ABSTRACT

Photophysical properties of 2,6-diamino-9,10-anthraquinone (2,6-DAAQ) dye have been investigated in different solvents and solvent mixtures. The fluorescence quantum yields, fluorescence lifetimes, radiative rate constants, nonradiative rate constants and absorption and fluorescence spectral characteristics show unusual deviations in the lower polarity aprotic solvents in comparison to those in other aprotic solvents of medium to higher polarities. The results indicate that the dye exists in different structural forms in the lower and in the medium to higher polarity solvents. Drawing an analogy with the results reported for other amino-substituted dyes, it is inferred that 2,6-DAAQ dye adopts a planar intramolecular charge transfer (ICT) structure in medium to higher polarity solvents, where the amino lone pairs are in good resonance with the anthraquinone pi-cloud. In the lower polarity solvents, however, the dye is inferred to exist in a nonplanar structure where the amino lone pairs are not in good resonance with the anthraquinone pi-cloud. Due to these structural differences, the dye displays significantly different photophysical behavior in the lower polarity solvents than in the other solvents of medium to higher polarities. Supportive evidence for the above structural changes has been obtained from ab initio quantum chemical calculations on the structures of the dye under different conditions. Unusual deviations in the photophysical properties of 2,6-DAAQ dye in protic solvents in comparison to those in aprotic solvents of similar polarities are attributed to the intermolecular hydrogen bonding effect involving the OH groups of the protic solvents and the quinonoid oxygens of the dye.


Subject(s)
Anthraquinones/chemistry , Coloring Agents/chemistry , Solvents/chemistry , Kinetics , Spectrometry, Fluorescence
16.
J Chem Phys ; 127(4): 044303, 2007 Jul 28.
Article in English | MEDLINE | ID: mdl-17672686

ABSTRACT

Structure, energy enthalpy, and IR frequency of hydrated cesium ion clusters, Cs+-(H2O)n (n=1-10), are reported based on all electron calculations. Calculations have been carried out with a hybrid density functional, namely, Becke's three-parameter nonlocal hybrid exchange-correlation functional B3LYP applying cc-PVDZ correlated basis function for H and O atoms and a split valence 3-21G basis function for Cs atom. Geometry optimizations for all the cesium ion-water clusters have been carried out with several possible initial guess structures following Newton-Raphson procedure leading to many conformers close in energy. The calculated values of binding enthalpy obtained from present density functional based all electron calculations are in good agreement with the available measured data. Binding enthalpy profile of the hydrated clusters shows a saturation behavior indicating geometrical shell closing in hydrated structure. Significant shifts of O-H stretching bands with respect to free water molecule in IR spectra of hydrated clusters are observed in all the hydrated clusters.


Subject(s)
Cesium/chemistry , Microchemistry/methods , Models, Chemical , Models, Molecular , Water/chemistry , Cluster Analysis , Computer Simulation , Ions , Molecular Conformation , Solutions
17.
J Chem Phys ; 127(4): 044304, 2007 Jul 28.
Article in English | MEDLINE | ID: mdl-17672687

ABSTRACT

We report vertical detachment energy (VDE) and IR spectra of Br2.-.(H2O)n clusters (n=1-8) based on first principles electronic structure calculations. Cluster structures and IR spectra are calculated at Becke's half-and-half hybrid exchange-correlation functional (BHHLYP) with a triple split valence basis function, 6-311++G(d,p). VDE for the hydrated clusters is calculated based on second order Moller-Plesset perturbation (MP2) theory with the same set of basis function. On full geometry optimization, it is observed that conformers having interwater hydrogen bonding among solvent water molecules are more stable than the structures having double or single hydrogen bonded structures between the anionic solute, Br2.-, and solvent water molecules. Moreover, a conformer having cyclic interwater hydrogen bonded network is predicted to be more stable for each size hydrated cluster. It is also noticed that up to four solvent H2O units can reside around the solute in a cyclic interwater hydrogen bonded network. The excess electron in these hydrated clusters is localized over the solute atoms. Weighted average VDE is calculated for each size (n) cluster based on statistical population of the conformers at 150 K. A linear relationship is obtained for VDE versus (n+3)(-1/3) and bulk VDE of Br2.- aqueous solution is calculated as 10.01 eV at MP2 level of theory. BHHLYP density functional is seen to make a systematic overestimation in VDE values by approximately 0.5 eV compared to MP2 data in all the hydrated clusters. It is observed that hydration increases VDE of bromine dimer anion system by approximately 6.4 eV. Calculated IR spectra show that the formation of Br2.--water clusters induces large shifts from the normal O-H stretching bands of isolated water keeping bending modes rather insensitive. Hydrated clusters, Br2.-.(H2O)n, show characteristic sharp features of O-H stretching bands of water in the small size clusters.

18.
J Chem Phys ; 126(3): 034301, 2007 Jan 21.
Article in English | MEDLINE | ID: mdl-17249865

ABSTRACT

The authors report theoretical results on structure, bonding, energy, and infrared spectra of iodine dimer radical anion hydrated clusters, I(2) (-).nH(2)O (n=1-8), based on a systematic study following density functional theory. Several initial guess structures are considered for each size cluster to locate minimum energy conformers with a Gaussian 6-311++G(d,p) split valence basis function (triple split valence 6-311 basis set is applied for iodine). It is observed that three different types of hydrogen bonded structures, namely, symmetrical double hydrogen bonding, single hydrogen bonding, and interwater hydrogen bonding structures, are possible in these hydrated clusters. But conformers having interwater hydrogen bonding arrangements are more stable compared to those of double or single hydrogen bonded structures. It is also noticed that up to four solvent H(2)O units can reside around the solute in interwater hydrogen bonding network. At the maximum six H(2)O units are independently linked to the dimer anion having four double hydrogen bonding and two single hydrogen bonding, suggesting the hydration number of I(2) (-) to be 6. However, conformers having H(2)O units independently linked to the iodine dimer anion are not the most stable structures. In all these hydrated clusters, the odd electron is found to be localized over two I atoms and the two atoms are bound by a three-electron hemi bond. The solvation, interaction, and vertical detachment energies are calculated for all I(2) (-).nH(2)O clusters. Energy of interaction and vertical detachment energy profiles show stepwise saturation, indicating geometrical shell closing in the hydrated clusters, but solvation energy profile fails to show such behavior. A linear correlation is observed between the calculated energy of interaction and vertical detachment energy. It is observed that formation of I(2) (-)-water cluster induces significant shifts from the normal O-H stretching modes of isolated H(2)O. However, bending mode of H(2)O remains insensitive to the successive addition of solvent H(2)O units. Weighted average energy profiles and IR spectra are reported for all the hydrated clusters based on the statistical population of individual conformers at room temperature.

19.
J Chem Phys ; 125(7): 074309, 2006 Aug 21.
Article in English | MEDLINE | ID: mdl-16942341

ABSTRACT

We present the results of a detailed study on structure and electronic properties of hydrated cluster Cl2*-.nH2O (n = 1-7) based on a nonlocal density functional, namely, Becke's [J. Chem. Phys. 98, 1372 (1993)] half and half hybrid exchange-correlation functional with a split valence 6-311++G(d,p) basis function. Geometry optimizations for all the clusters are carried out with various possible initial guess structures without any symmetry restriction. Several minimum energy structures (conformers) are predicted with a small difference in total energy. There is a competition between the binding of solvent H2O units with Cl2*- dimer radical anion directly through ion-molecule interaction and forming interwater hydrogen-bonding network in Cl2*-.nH2O (n > or = 2) hydrated cluster. Structure having interwater H-bonded network is more stable over the structure where H2O units are connected to the solute dimer radical anion Cl2*- rather independently either by single or double H bonding in a particular size (n) of hydrated cluster Cl2*-.nH2O. At the maximum four solvent H2O units reside in interwater H-bonding network present in these hydrated clusters. It is observed that up to six H2O units are independently linked to the anion having four double H bondings and two single H bondings suggesting the primary hydration number of Cl2*- to be 6. In all these clusters, the odd electron is found to be mostly localized over the two Cl atoms and these two atoms are bound by a three-electron hemibond. Calculated interaction (between solute and different water clusters) and vertical detachment energy profiles show saturation at n = 6 in the hydrated cluster Cl2*-.nH2O (n = 1-7). However, calculated solvation energy increases with the increase in number of solvent H2O molecules in the cluster. Interaction energy varies linearly with vertical detachment energy for the hydrated clusters Cl2*-.nH2O (n < or = 6). Calculation of the vibration frequencies show that the formation of Cl2*(-)-water clusters induces significant shifts from the normal stretching modes of isolated water. A clear difference in the pattern of IR spectra is observed in the O-H stretching region of water from hexa- to heptahydrated cluster.

20.
J Chem Phys ; 124(2): 024322, 2006 Jan 14.
Article in English | MEDLINE | ID: mdl-16422598

ABSTRACT

The work presents ab initio results on structure and electronic properties of Br2*-.nH2O(n=1-10) and Br2.nH2O(n=1-8) hydrated clusters to study the effects of an excess electron on the microhydration of the halide dimer. A nonlocal density functional, namely, Becke's half-and-half hybrid exchange-correlation functional is found to perform well on the present systems with a split valence 6-31++G(d,p) basis function. Geometry optimizations for all the clusters are carried out with several initial guess structures and without imposing any symmetry restriction. Br2*-.nH2O clusters prefer to have symmetrical double hydrogen-bonding structures. Results on Br2.nH2O(n>or=2) cluster show that the O atom of one H2O is oriented towards one Br atom and the H atom of another H2O is directed to other Br atom making Br2 to exist as Br+-Br- entity in the cluster. The binding and solvation energies are calculated for the Br2*-.nH2O and Br2.nH2O clusters. Calculations of the vibrational frequencies show that the formation of Br2*- and Br2 water clusters induces significant shifts from the normal modes of isolated water. Excited-state calculations are carried out on Br2*-.nH2O clusters following configuration interaction with single electron excitation procedure and UV-VIS absorption profiles are simulated. There is an excellent agreement between the present theoretical UV-VIS spectra of Br2*-.10H2O cluster and the reported transient optical spectra for Br2*- in aqueous solution.

SELECTION OF CITATIONS
SEARCH DETAIL
...