Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
JCI Insight ; 8(2)2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36692015

ABSTRACT

Organic anion transporter 1 (OAT1/SLC22A6, NKT) is a multispecific drug transporter in the kidney with numerous substrates, including pharmaceuticals, endogenous metabolites, natural products, and uremic toxins. Here, we show that OAT1 regulates levels of gut microbiome-derived metabolites. We depleted the gut microbiome of Oat1-KO and WT mice and performed metabolomics to analyze the effects of genotype (KO versus WT) and microbiome depletion. OAT1 is an in vivo intermediary between the host and the microbes, with 40 of the 162 metabolites dependent on the gut microbiome also impacted by loss of Oat1. Chemoinformatic analysis revealed that the altered metabolites (e.g., indoxyl sulfate, p-cresol sulfate, deoxycholate) had more ring structures and sulfate groups. This indicates a pathway from gut microbes to liver phase II metabolism, to renal OAT1-mediated transport. The idea that multiple gut-derived metabolites directly interact with OAT1 was confirmed by in vitro transport and magnetic bead binding assays. We show that gut microbiome-derived metabolites dependent on OAT1 are impacted in a chronic kidney disease (CKD) model and human drug-metabolite interactions. Consistent with the Remote Sensing and Signaling Theory, our results support the view that drug transporters (e.g., OAT1, OAT3, OATP1B1, OATP1B3, MRP2, MRP4, ABCG2) play a central role in regulating gut microbe-dependent metabolism, as well as interorganismal communication between the host and microbiome.


Subject(s)
Gastrointestinal Microbiome , Animals , Humans , Mice , Biological Transport/genetics , Kidney/metabolism , Membrane Transport Proteins , Metabolomics
2.
Proc Natl Acad Sci U S A ; 116(28): 14309-14318, 2019 07 09.
Article in English | MEDLINE | ID: mdl-31227607

ABSTRACT

Sensing and responding to environmental water deficiency and osmotic stresses are essential for the growth, development, and survival of plants. Recently, an osmolality-sensing ion channel called OSCA1 was discovered that functions in sensing hyperosmolality in Arabidopsis Here, we report the cryo-electron microscopy (cryo-EM) structure and function of an OSCA1 homolog from rice (Oryza sativa; OsOSCA1.2), leading to a model of how it could mediate hyperosmolality sensing and transport pathway gating. The structure reveals a dimer; the molecular architecture of each subunit consists of 11 transmembrane (TM) helices and a cytosolic soluble domain that has homology to RNA recognition proteins. The TM domain is structurally related to the TMEM16 family of calcium-dependent ion channels and lipid scramblases. The cytosolic soluble domain possesses a distinct structural feature in the form of extended intracellular helical arms that are parallel to the plasma membrane. These helical arms are well positioned to potentially sense lateral tension on the inner leaflet of the lipid bilayer caused by changes in turgor pressure. Computational dynamic analysis suggests how this domain couples to the TM portion of the molecule to open a transport pathway. Hydrogen/deuterium exchange mass spectrometry (HDXMS) experimentally confirms the conformational dynamics of these coupled domains. These studies provide a framework to understand the structural basis of proposed hyperosmolality sensing in a staple crop plant, extend our knowledge of the anoctamin superfamily important for plants and fungi, and provide a structural mechanism for potentially translating membrane stress to transport regulation.


Subject(s)
Anoctamins/ultrastructure , Arabidopsis Proteins/ultrastructure , Calcium Channels/ultrastructure , Oryza/ultrastructure , Protein Conformation , Amino Acid Sequence/genetics , Anoctamins/chemistry , Anoctamins/genetics , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Calcium Channels/genetics , Calcium Channels/metabolism , Cryoelectron Microscopy , Cytoplasm/genetics , Mass Spectrometry , Membrane Potentials/genetics , Oryza/genetics , Oryza/growth & development , Osmotic Pressure/physiology , Water/chemistry
3.
ACS Chem Biol ; 8(6): 1311-23, 2013.
Article in English | MEDLINE | ID: mdl-23570531

ABSTRACT

PCAF (KAT2B) belongs to the GNAT family of lysine acetyltransferases (KAT) and specifically acetylates the histone H3K9 residue and several nonhistone proteins. PCAF is also a transcriptional coactivator. Due to the lack of a PCAF KAT-specific small molecule inhibitor, the exclusive role of the acetyltransferase activity of PCAF is not well understood. Here, we report that a natural compound of the hydroxybenzoquinone class, embelin, specifically inhibits H3Lys9 acetylation in mice and inhibits recombinant PCAF-mediated acetylation with near complete specificity in vitro. Furthermore, using embelin, we have identified the gene networks that are regulated by PCAF during muscle differentiation, further highlighting the broader regulatory functions of PCAF in muscle differentiation in addition to the regulation via MyoD acetylation.


Subject(s)
Acetylation/drug effects , Benzoquinones/pharmacology , p300-CBP Transcription Factors/antagonists & inhibitors , p300-CBP Transcription Factors/metabolism , Animals , Benzoquinones/chemistry , Cell Differentiation , Cell Line , Gene Expression Regulation/drug effects , HEK293 Cells , Histones/metabolism , Humans , Mice , MyoD Protein/metabolism , Myoblasts/cytology , Myoblasts/metabolism , Recombinant Proteins/metabolism
4.
J Biomol Struct Dyn ; 29(5): 973-83, 2012.
Article in English | MEDLINE | ID: mdl-22292955

ABSTRACT

The crystal structure of Rv0098, a long-chain fatty acyl-CoA thioesterase from Mycobacterium tuberculosis with bound dodecanoic acid at the active site provided insights into the mode of substrate binding but did not reveal the structural basis of substrate specificities of varying chain length. Molecular dynamics studies demonstrated that certain residues of the substrate binding tunnel are flexible and thus modulate the length of the tunnel. The flexibility of the loop at the base of the tunnel was also found to be important for determining the length of the tunnel for accommodating appropriate substrates. A combination of crystallographic and molecular dynamics studies thus explained the structural basis of accommodating long chain substrates by Rv0098 of M. tuberculosis.


Subject(s)
Mycobacterium tuberculosis/enzymology , Palmitoyl-CoA Hydrolase/chemistry , Palmitoyl-CoA Hydrolase/metabolism , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Binding Sites , Cloning, Molecular , Crystallography, X-Ray , Models, Molecular , Molecular Dynamics Simulation , Palmitoyl-CoA Hydrolase/genetics , Protein Conformation , Substrate Specificity
5.
J Struct Biol ; 176(2): 238-49, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21843645

ABSTRACT

The ß-hydroxyacyl-acyl carrier protein dehydratase of Plasmodium falciparum (PfFabZ) catalyzes the third and important reaction of the fatty acid elongation cycle. The crystal structure of PfFabZ is available in hexameric (active) and dimeric (inactive) forms. However, PfFabZ has not been crystallized with any bound inhibitors until now. We have designed a new condition to crystallize PfFabZ with its inhibitors bound in the active site, and determined the crystal structures of four of these complexes. This is the first report on any FabZ enzyme with active site inhibitors that interact directly with the catalytic residues. Inhibitor binding not only stabilized the substrate binding loop but also revealed that the substrate binding tunnel has an overall shape of "U". In the crystal structures, residue Phe169 located in the middle of the tunnel was found to be in two different conformations, open and closed. Thus, Phe169, merely by changing its side chain conformation, appears to be controlling the length of the tunnel to make it suitable for accommodating longer substrates. The volume of the substrate binding tunnel is determined by the sequence as well as by the conformation of the substrate binding loop region and varies between organisms for accommodating fatty acids of different chain lengths. This report on the crystal structures of the complexes of PfFabZ provides the structural basis of the inhibitory mechanism of the enzyme that could be used to improve the potency of inhibitors against an important component of fatty acid synthesis common to many infectious organisms.


Subject(s)
Enoyl-CoA Hydratase/chemistry , Plasmodium falciparum/enzymology , Protozoan Proteins/chemistry , Amino Acid Motifs , Amino Acid Sequence , Antimalarials/chemistry , Catalytic Domain , Computer Simulation , Crystallography, X-Ray , Enoyl-CoA Hydratase/antagonists & inhibitors , Enzyme Inhibitors/chemistry , Hydrogen Bonding , Models, Molecular , Molecular Sequence Data , Protein Binding , Sequence Homology, Amino Acid , Surface Properties
6.
IUBMB Life ; 63(1): 30-41, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21280175

ABSTRACT

Enoyl acyl carrier protein reductase (ENR), which catalyzes the final and rate limiting step of fatty acid elongation, has been validated as a potential drug target. Triclosan is known to be an effective inhibitor for this enzyme. We mutated the substrate binding site residue Ala372 of the ENR of Plasmodium falciparum (PfENR) to Methionine and Valine which increased the affinity of the enzyme towards triclosan to almost double, close to that of Escherichia coli ENR (EcENR) which has a Methionine at the structurally similar position of Ala372 of PfENR. Kinetic studies of the mutants of PfENR and the crystal structure analysis of the A372M mutant revealed that a more hydrophobic environment enhances the affinity of the enzyme for the inhibitor. A triclosan derivative showed a threefold increase in the affinity towards the mutants compared to the wild type, due to additional interactions with the A372M mutant as revealed by the crystal structure. The enzyme has a conserved salt bridge which stabilizes the substrate binding loop and appears to be important for the active conformation of the enzyme. We generated a second set of mutants to check this hypothesis. These mutants showed loss of function, except in one case, where the crystal structure showed that the substrate binding loop is stabilized by a water bridge network.


Subject(s)
Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)/metabolism , Plasmodium falciparum/enzymology , Point Mutation , Animals , Crystallization , Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)/antagonists & inhibitors , Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)/chemistry , Enzyme Inhibitors/pharmacology , Enzyme Stability , Kinetics , Models, Molecular , Protein Conformation , Substrate Specificity , Triclosan/pharmacology
7.
IUBMB Life ; 62(6): 467-76, 2010 Jun.
Article in English | MEDLINE | ID: mdl-20503440

ABSTRACT

Triclosan, a well-known inhibitor of Enoyl Acyl Carrier Protein Reductase (ENR) from several pathogenic organisms, is a promising lead compound to design effective drugs. We have solved the X-ray crystal structures of Plasmodium falciparum ENR in complex with triclosan variants having different substituted and unsubstituted groups at different key functional locations. The structures revealed that 4 and 2' substituted compounds have more interactions with the protein, cofactor, and solvents when compared with triclosan. New water molecules were found to interact with some of these inhibitors. Substitution at the 2' position of triclosan caused the relocation of a conserved water molecule, leading to an additional hydrogen bond with the inhibitor. This observation can help in conserved water-based inhibitor design. 2' and 4' unsubstituted compounds showed a movement away from the hydrophobic pocket to compensate for the interactions made by the halogen groups of triclosan. This compound also makes additional interactions with the protein and cofactor which compensate for the lost interactions due to the unsubstitution at 2' and 4'. In cell culture, this inhibitor shows less potency, which indicates that the chlorines at 2' and 4' positions increase the ability of the inhibitor to cross multilayered membranes. This knowledge helps us to modify the different functional groups of triclosan to get more potent inhibitors.


Subject(s)
Anti-Infective Agents, Local/chemistry , Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)/chemistry , Enzyme Inhibitors/chemistry , Plasmodium falciparum/enzymology , Triclosan/chemistry , Anti-Infective Agents, Local/pharmacology , Crystallography, X-Ray , Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Inhibitory Concentration 50 , Models, Molecular , Molecular Structure , Plasmodium falciparum/drug effects , Triclosan/pharmacology
8.
IUBMB Life ; 61(11): 1083-91, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19859979

ABSTRACT

A structure-based approach has been adopted to develop 2'-substituted analogs of triclosan. The Cl at position 2' in ring B of triclosan was chemically substituted with other functional groups like NH(2), NO(2) and their inhibitory potencies against PfENR were determined. The binding energies of the 2' substituted analogs of triclosan for enoyl-acyl carrier protein reductase (ENR) of Plasmodium falciparum were determined using Autodock. Based on the autodock results, we synthesized the potential compounds. The IC(50) and inhibition constant (K(i)) of 2' substituted analogs of triclosan were determined against purified PfENR. Among them, two compounds, 2-(2'-Amino-4'-chloro-phenoxy)-5-chloro-phenol (compound 4) and 5-chloro-2-(4'-chloro-2'-nitro-phenoxy)-phenol) (compound 5) exhibited good potencies. Compound 4 followed uncompetitive inhibition kinetics with crotonoyl CoA and competitive with NADH. It was shown to have an IC(50) of 110 nM; inhibition constant was 104 nM with the substrate and 61 nM with the cofactor. IC(50) of compound 5 was determined to be 229 nM. Compounds 4 and 5 showed significant inhibition of the parasite growth in P. falciparum culture.


Subject(s)
Chlorophenols/chemical synthesis , Enoyl-(Acyl-Carrier-Protein) Reductase (NADH)/antagonists & inhibitors , Phenyl Ethers/chemical synthesis , Triclosan/analogs & derivatives , Acyl Coenzyme A/metabolism , Antimalarials/chemical synthesis , Antimalarials/chemistry , Chlorophenols/pharmacology , Drug Design , Drug Evaluation, Preclinical , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Inhibitory Concentration 50 , Kinetics , Phenyl Ethers/pharmacology , Plasmodium falciparum/enzymology , Structure-Activity Relationship , Triclosan/chemical synthesis , Triclosan/chemistry
9.
BMC Struct Biol ; 9: 37, 2009 May 28.
Article in English | MEDLINE | ID: mdl-19473548

ABSTRACT

BACKGROUND: The hot dog fold has been found in more than sixty proteins since the first report of its existence about a decade ago. The fold appears to have a strong association with fatty acid biosynthesis, its regulation and metabolism, as the proteins with this fold are predominantly coenzyme A-binding enzymes with a variety of substrates located at their active sites. RESULTS: We have analyzed the structural features and sequences of proteins having the hot dog fold. This study reveals that though the basic architecture of the fold is well conserved in these proteins, significant differences exist in their sequence, nature of substrate and oligomerization. Segments with certain conserved sequence motifs seem to play crucial structural and functional roles in various classes of these proteins. CONCLUSION: The analysis led to predictions regarding the functional classification and identification of possible catalytic residues of a number of hot dog fold-containing hypothetical proteins whose structures were determined in high throughput structural genomics projects.


Subject(s)
Conserved Sequence , Escherichia coli Proteins/chemistry , Hydro-Lyases/chemistry , Protein Structure, Tertiary , Thiolester Hydrolases/chemistry , Amino Acid Sequence , Animals , Catalytic Domain , Computational Biology , Fatty Acid Synthase, Type II , Fatty Acids/biosynthesis , Humans , Phylogeny , Protein Folding , Sequence Analysis, Protein
10.
IUBMB Life ; 59(7): 441-9, 2007 Jul.
Article in English | MEDLINE | ID: mdl-17654120

ABSTRACT

The conformational stability of the homotetrameric Plasmodium falciparum beta-ketoacyl-ACP reductase (FabG) was determined by guanidinium chloride-induced isothermal and thermal denaturation. The reversible unfolding transitions were monitored by intrinsic fluorescence, circular dichroism (CD) spectroscopy and by measuring the enzyme activity of FabG. The denaturation profiles were analyzed to obtain the thermodynamic parameters associated with unfolding of the protein. The data confirm the simple A(4) <--> 4A model of unfolding, based on the corroboration of CD data by fluorescence transition and similar Delta G estimation for denaturation curves obtained at four different concentration of the FabG. Denaturation is well described by the linear extrapolation model for denaturant-protein interactions. In addition, the conformational stability (Delta G(s)) as well as the Delta C(p) for the protein unfolding is quite high, 22.68 kcal/mole and 5.83 kcal/(mole K), respectively, which may be a reflection of the relatively large size of the tetrameric molecule (Mr 120, 000) and a large buried hydrophobic core in the folded protein. This study provides a prototype for determining conformational stability of other members of the short-chain alcohol dehydrogenase/reductase superfamily of proteins to which PfFabG belongs.


Subject(s)
Alcohol Oxidoreductases/chemistry , Alcohol Oxidoreductases/physiology , Plasmodium falciparum/enzymology , Protein Structure, Quaternary , Thermodynamics , 3-Oxoacyl-(Acyl-Carrier-Protein) Reductase , Animals , Enzyme Stability/physiology , Protein Denaturation
SELECTION OF CITATIONS
SEARCH DETAIL
...