Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 40(1): 317-324, 2024 01 09.
Article in English | MEDLINE | ID: mdl-38103254

ABSTRACT

Artificial nanoenzymes based on metal nanoclusters have received great attention for multienzyme activities nowadays. In this work, pepsin-capped copper NCs (Cu-Pep NCs) are used as oxidase, ascorbic acid oxidase (AAO), and peroxidase mimics, and their activities are enhanced by the introduction of imidazole. The oxidase activity increased almost 7.5-fold, while 5-fold and 2-fold increases were observed for the peroxidase and AAO-like activity, respectively. The enhanced radical formation in the presence of imidazole moieties facilitates the enzymatic activity of the Cu-Pep-NCs/Imid system. This work describes the different enzymatic activities of the NCs, paving a new way for artificial nanoenzymes having enhanced activities.


Subject(s)
Copper , Metal Nanoparticles , Oxidoreductases , Ascorbic Acid , Peroxidases , Imidazoles
2.
J Phys Chem Lett ; 13(24): 5581-5588, 2022 Jun 23.
Article in English | MEDLINE | ID: mdl-35698791

ABSTRACT

Precisely doped metal nanoclusters (NCs) are currently emerging nanomaterials for their unique photophysical properties. Here, we report the influence of single atom doping on the excited state relaxation dynamics of a series of MAg24(2,4-Me2PhS)18n- NCs where M is Ag, Au, Pd, and Pt. The NCs with a group 11 metal (Ag and Au) as central atoms exhibit dual emission at NIR and visible range, whereas it shows only NIR emission for group 10 metal (Pd and Pt) doped NCs. Global target analyses of transient absorption (TA) data reveal the three-state relaxation, i.e., initially excited state (Sn), ligand-centered charge transfer (CT) state (SL), and metal-centered lowest excited state (S1). Apart from the HOMO-LUMO (H-L) energy gap, the electron affinity of the central metal atom and rigidity of the NC structural framework influence the relaxation processes of the NCs. The extensive study into the relaxation dynamics will bestow the single atomic level modulation of photophysical properties.

3.
Nanomaterials (Basel) ; 12(3)2022 Feb 05.
Article in English | MEDLINE | ID: mdl-35159891

ABSTRACT

Studies on self-assembly of metal nanoclusters (MNCs) are an emerging field of research owing to their significant optical properties and potential applications in many areas. Fabricating the desired self-assembly structure for specific implementation has always been challenging in nanotechnology. The building blocks organize themselves into a hierarchical structure with a high order of directional control in the self-assembly process. An overview of the recent achievements in the self-assembly chemistry of MNCs is summarized in this review article. Here, we investigate the underlying mechanism for the self-assembly structures, and analysis reveals that van der Waals forces, electrostatic interaction, metallophilic interaction, and amphiphilicity are the crucial parameters. In addition, we discuss the principles of template-mediated interaction and the effect of external stimuli on assembly formation in detail. We also focus on the structural correlation of the assemblies with their photophysical properties. A deep perception of the self-assembly mechanism and the degree of interactions on the excited state dynamics is provided for the future synthesis of customizable MNCs with promising applications.

4.
Inorg Chem ; 60(24): 19270-19277, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-34882397

ABSTRACT

The structure-property correlation of a series of silver nanoclusters (NCs) is essential to understand the origin of photophysical properties. Here, we report a series of face-centered cubic (fcc)-based silver NCs by varying the halogen atom in the thiolate ligand to investigate the influence of the halide atoms on the electronic structure. These are {Ag14(FBT)12(PPh3)8·(solvent)x} (NC-1), Ag14(CBT)12(PPh3)8 (NC-2), and Ag14(BBT)12(PPh3)8 (NC-3), where 4-fluorothiophenol (FBT), 4-chlorothiophenol (CBT), and 4-bromothiophenol (BBT) have been utilized as thiolate ligands, respectively. Interestingly, the optical and electrochemical bandgap values of these NCs nicely correlated with the electronic effect of the halides, which is governed by the intracluster and interclusters π-π interactions. These clusters are emissive at room temperature and the luminescence intensity increases with the lowering of temperature. The short lifetime data suggest that the emission is predominantly originating due to the interband relaxation (d → sp) of the Ag cores. Femtosecond transient absorption (TA) spectra revealed similar types of decay profiles for NC-2 and NC-3 and longer decay time for NC-2. The relaxation dominates the decay profile to the surface states and most of the excited-state energy dissipates via this process. This supports the molecular-like dynamics of these series of NCs with an fcc core. This overview shed light on an in-depth understanding of ligand's role in luminescence and transient absorption spectra.

5.
J Phys Chem Lett ; 12(8): 2154-2159, 2021 Mar 04.
Article in English | MEDLINE | ID: mdl-33626284

ABSTRACT

We report the synthesis, crystal structure, and electronic structure calculations of a one-dimensional silver-thiolate cluster-assembled and its ultrafast spectroscopic investigation. Experiments and theory find the material to have a significant gap as the HOMO-LUMO absorption corresponds to 2.69 eV, and the defect-free structure is calculated to have a gap of 2.82 eV. Cluster models demonstrate that the gap energy is length-dependent. Theoretical studies identify a nonbonding metallophilic interaction that exists between two Ag atoms in adjacent strings that helps to stabilize the chain structure. Transient absorption spectroscopy reveals that the electron dynamics is a mixture of the behavior of cluster and nanoparticle, with the material having a 346 fs ground-state relaxation like a cluster, and the electron dynamics is dominated by electron-phonon coupling with a decay time of 1.5 ps, unlike the isolated cluster whose decay is mostly radiative.

6.
Nanoscale Adv ; 3(19): 5570-5575, 2021 Sep 28.
Article in English | MEDLINE | ID: mdl-36133258

ABSTRACT

Tailoring the hierarchical self-assembly of metal nanoclusters (NCs) is an emergent area of research owing to their precise structure and flexible surface environment. Herein, the morphological evolution from rods to platelets to ribbon-like structures through self-assembly of Cu7 NCs is dictated by the positional isomerism of the surface capping ligand, dimethylbenzenethiol (DMBT). Besides cuprophilic interaction, the interplay between π-π stacking and agostic interaction (Cu⋯H-C) directs the inter-NC organization into different ordered architectures. The excited-state relaxation dynamics of the red phosphorescent assembled structures has been correlated with their compactness and the degree of bonding interactions present.

7.
Chem Commun (Camb) ; 56(65): 9292-9295, 2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32666967

ABSTRACT

Aggregation-induced emission (AIE) is a recently developed strategy to design highly luminescent metal nanoclusters (NCs), which can be controlled by the surface motifs [M(i)-SR] of NCs. This communication is an account to understand the AIE in gold silver (AuAg) NCs, where the Au(i)-thiolate motif is engineered by doping different amount of Ag in Au NCs. Investigation revealed the great impact of Au(i)-thiolate motifs on the AIE of AuAg NCs.

8.
Nanoscale ; 11(47): 22685-22723, 2019 Dec 21.
Article in English | MEDLINE | ID: mdl-31774095

ABSTRACT

Photophysics of atomically precise metal nanoclusters (MNCs) is an emerging area of research due to their potential applications in optoelectronics, photovoltaics, sensing, bio-imaging and catalysis. An overview of the recent advances in the photophysical properties of MNCs is presented in this review. To begin with, we illustrate general synthesis methodologies of MNCs using direct reduction, chemical etching, ligand exchange, metal exchange and intercluster reaction. Due to strong quantum confinement, the NCs possess unique electronic properties such as discrete optical absorption, intense photoluminescence (PL), molecular-like electron dynamics and non-linear optical behavior. Discussions have also been carried out to unveil the influence of the core size, nature of ligands, heteroatom doping, and surrounding environments on the optical absorption and photophysical properties of metal clusters. Recent findings reveal that the excited-state dynamics, nonlinear optical properties and aggregation induced emission of metal clusters offer exciting opportunities for potential applications. We discuss briefly about their versatile applications in optoelectronics, sensing, catalysis and bio-imaging. Finally, the future perspective of this research field is given.


Subject(s)
Metal Nanoparticles/chemistry , Nanotechnology/trends , Catalysis , Cell Line, Tumor , Crystallography, X-Ray , Electronics , Electrons , Humans , Hydrogen-Ion Concentration , Ligands , Luminescence , Nonlinear Dynamics , Optics and Photonics , Photochemistry , Solar Energy , Sulfhydryl Compounds
9.
Phys Chem Chem Phys ; 21(11): 5863-5881, 2019 Mar 13.
Article in English | MEDLINE | ID: mdl-30534715

ABSTRACT

This feature article highlights the recent advances of luminescent metal nanoclusters (MNCs) for their potential applications in healthcare and energy-related materials because of their high photosensitivity, thermal stability, low toxicity, and biocompatibility. Current studies reveal that metal cluster based hybrid systems could pave the way for energy harvesting and sensing applications. To begin with, we illustrate general synthesis methodologies for atomically precise metal nanoclusters and discuss the origin of photoluminescence properties and the electronic transitions of nanoclusters. Successively, we discuss the energy transfer and electron transfer processes in metal cluster based hybrid systems with CdTe QDs, carbon dots (C-dots), functionalized DNA and graphene oxide. Finally, we address the potential advantages of metal clusters and their hybrid systems as an optical probe for the selective detection of toxic metal ions. A tentative outlook on fundamental challenges and future opportunities of this research field is highlighted.


Subject(s)
Cadmium Compounds/chemistry , Energy Transfer , Metal Nanoparticles/chemistry , Tellurium/chemistry , DNA/chemistry , Electrons , Graphite/chemistry , Luminescence
SELECTION OF CITATIONS
SEARCH DETAIL
...