Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Biomedicines ; 11(12)2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38137523

ABSTRACT

The objective of this study was to investigate whether the impairment of farnesoid X receptor (FXR)-fibroblast growth factor 19 (FGF19) signaling in juvenile pigs with non-alcoholic fatty liver disease (NAFLD) is associated with changes in the composition of the enterohepatic bile acid pool. Eighteen 15-day-old Iberian pigs, pair-housed in pens, were allocated to receive either a control (CON) or high-fructose, high-fat (HFF) diet. Animals were euthanized in week 10, and liver, blood, and distal ileum (DI) samples were collected. HFF-fed pigs developed NAFLD and had decreased FGF19 expression in the DI and lower FGF19 levels in the blood. Compared with the CON, the HFF diet increased the total cholic acid (CA) and the CA to chenodeoxycholic acid (CDCA) ratio in the liver, DI, and blood. CA and CDCA levels in the DI were negatively and positively correlated with ileal FGF19 expression, respectively, and blood levels of FGF19 decreased with an increasing ileal CA to CDCA ratio. Compared with the CON, the HFF diet increased the gene expression of hepatic 12-alpha-hydrolase, which catalyzes the synthesis of CA in the liver. Since CA species are weaker FXR ligands than CDCA, our results suggest that impairment of FXR-FGF19 signaling in NAFLD pigs is associated with a decrease in FXR agonism in the bile acid pool.

2.
Crit Care Med ; 51(2): e37-e44, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36476809

ABSTRACT

OBJECTIVES: This clinical trial aimed to compare the ultrasound-guided in-plane infraclavicular cannulation of the axillary vein (AXV) and the ultrasound-guided out-of-plane cannulation of the internal jugular vein (IJV). DESIGN: A prospective, single-blinded, open label, parallel-group, randomized trial. SETTING: Two university-affiliated ICUs in Poland (Opole and Lublin). PATIENTS: Mechanically ventilated intensive care patients with clinical indications for central venous line placement. INTERVENTIONS: Patients were randomly assigned into two groups: the IJV group ( n = 304) and AXV group ( n = 306). The primary outcome was to compare the IJV group and AXV group through the venipuncture and catheterization success rates. Secondary outcomes were catheter tip malposition and early mechanical complication rates. All catheterizations were performed by advanced residents and consultants in anesthesiology and intensive care. MEASUREMENTS AND MAIN RESULTS: The IJV puncture rate was 100%, and the AXV was 99.7% (chi-square, p = 0.19). The catheterization success rate in the IJV group was 98.7% and 96.7% in the AXV group (chi-square, p = 0.11). The catheter tip malposition rate was 9.9% in the IJV group and 10.1% in the AXV group (chi-square, p = 0.67). The early mechanical complication rate in the IJV group was 3% (common carotid artery puncture-4 cases, perivascular hematoma-2 cases, vertebral artery puncture-1 case, pneumothorax-1 case) and 2.6% in the AXV group (axillary artery puncture-4 cases, perivascular hematoma-4 cases) (chi-square, p = 0.79). CONCLUSIONS: No difference was found between the real-time ultrasound-guided out-of-plane cannulation of the IJV and the infraclavicular real-time ultrasound-guided in-plane cannulation of the AXV. Both techniques are equally efficient and safe in mechanically ventilated critically ill patients.


Subject(s)
Axillary Vein , Catheterization, Central Venous , Humans , Axillary Vein/diagnostic imaging , Prospective Studies , Jugular Veins/diagnostic imaging , Critical Illness/therapy , Respiration, Artificial , Ultrasonography, Interventional/methods , Catheterization, Central Venous/adverse effects , Catheterization, Central Venous/methods
3.
Brain Sci ; 12(9)2022 Sep 04.
Article in English | MEDLINE | ID: mdl-36138929

ABSTRACT

The objective of this study was to investigate the effect of dietary fatty acid (FA) saturation and carbon chain length on brain bile acid (BA) metabolism and neuronal number in a pig model of pediatric NAFLD. Thirty 20-day-old Iberian pigs, pair-housed in pens, were randomly assigned to receive one of three hypercaloric diets for 10 weeks: (1) lard-enriched (LAR; n = 5 pens), (2) olive-oil-enriched (OLI, n = 5), and (3) coconut-oil-enriched (COC; n = 5). Pig behavior and activity were analyzed throughout the study. All animals were euthanized on week 10 and frontal cortex (FC) samples were collected for immunohistochemistry, metabolomic, and transcriptomic analyses. Data were analyzed by multivariate and univariate statistics. No differences were observed in relative brain weight, neuronal number, or cognitive functioning between diets. Pig activity and FC levels of neuroprotective secondary BAs and betaine decreased in the COC and OLI groups compared with LAR, and paralleled the severity of NAFLD. In addition, OLI-fed pigs showed downregulation of genes involved in neurotransmission, synaptic transmission, and nervous tissue development. Similarly, COC-fed pigs showed upregulation of neurogenesis and myelin repair genes, which caused the accumulation of medium-chain acylcarnitines in brain tissue. In conclusion, our results indicate that secondary BA levels in the FCs of NAFLD pigs are affected by dietary FA composition and are associated with metabolic and transcriptomic markers of brain injury. Dietary interventions that aim to replace saturated FAs by medium-chain or monounsaturated FAs in high-fat hypercaloric diets may have a negative effect on brain health in NAFLD patients.

4.
Am J Physiol Endocrinol Metab ; 323(3): E187-E206, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35858244

ABSTRACT

The objective of this study was to investigate the effect of dietary fatty acid (FA) composition on bile acid (BA) metabolism in a pig model of NAFLD, by using a multiomics approach combined with histology and serum biochemistry. Thirty 20-day-old Iberian pigs pair-housed in pens were randomly assigned to receive 1 of 3 hypercaloric diets for 10 wk: 1) lard-enriched (LAR; n = 5 pens), 2) olive oil-enriched (OLI; n = 5), and 3) coconut oil-enriched (COC; n = 5). Animals were euthanized on week 10 after blood sampling, and liver, colon, and distal ileum (DI) were collected for histology, metabolomics, and transcriptomics. Data were analyzed by multivariate and univariate statistics. Compared with OLI and LAR, COC increased primary and secondary BAs in liver, plasma, and colon. In addition, both COC and OLI reduced circulating fibroblast growth factor 19, increased hepatic necrosis, composite lesion score, and liver enzymes in serum, and upregulated genes involved in hepatocyte proliferation and DNA repair. The severity of liver disease in COC and OLI pigs was associated with increased levels of phosphatidylcholines, medium-chain triacylglycerides, trimethylamine-N-oxide, and long-chain acylcarnitines in the liver, and the expression of profibrotic markers in DI, but not with changes in the composition or size of BA pool. In conclusion, our results indicate a role of dietary FAs in the regulation of BA metabolism and progression of NAFLD. Interventions that aim to modify the composition of dietary FAs, rather than to regulate BA metabolism or signaling, may be more effective in the treatment of NAFLD.NEW & NOTEWORTHY Bile acid homeostasis and signaling is disrupted in NAFLD and may play a central role in the development of the disease. However, there are no studies addressing the impact of diet on bile acid metabolism in patients with NAFLD. In juvenile Iberian pigs, we show that fatty acid composition in high-fat high-fructose diets affects BA levels in liver, plasma, and colon but these changes were not associated with the severity of the disease.


Subject(s)
Bile Acids and Salts , Dietary Fats , Liver , Non-alcoholic Fatty Liver Disease , Animals , Diet, High-Fat , Fatty Acids , Humans , Models, Animal , Swine
5.
Healthcare (Basel) ; 10(3)2022 Feb 22.
Article in English | MEDLINE | ID: mdl-35326892

ABSTRACT

BACKGROUND: A high-volume center with a multidisciplinary team is regarded as the optimal place for providing extracorporeal membrane oxygenation (ECMO). We hypothesize that an ECMO center can also be successfully created and subsequently developed entirely by intensivists in a mid-size mixed intensive care unit (ICU). METHODS: A model was created for setting up a new ECMO referral center within the structure of an existing mixed ICU in a tertiary hospital. A retrospective analysis was carried out of the first 33 patients treated in the initial period of the center's activity, from mid 2018 to the end of 2020. RESULTS: An ECMO center was established and developed entirely based on the resources of an existing mixed ICU. Thirty-three patients were treated. They had an overall survival rate at 90 days of 60.6%. In veno-venous (VV) mode ECMO duration, ICU length of stay, and SOFA score were significantly higher than in veno-arterial mode. No significant differences in clinical characteristics were observed between survivors and non-survivors on VV-ECMO. CONCLUSIONS: A regional ECMO center can be set up as an integral part of a mixed ICU in a tertiary hospital. Extracorporeal therapy, such as continuous renal replacement therapy and mechanical ventilation can be managed entirely by intensivists. Further studies are needed to show that the ICU-based approach to setting up a new ECMO center is no less effective than the multidisciplinary approach.

6.
Vaccines (Basel) ; 9(12)2021 Nov 30.
Article in English | MEDLINE | ID: mdl-34960163

ABSTRACT

To investigate whether oral administration of maize-produced S antigen can provide passive immunity to piglets against porcine epidemic diarrhea virus (PEDV), 16 pregnant sows were randomly assigned to one of four treatments: (1) injection of PEDV vaccine (INJ), (2) maize grain without S protein (CON), (3) maize grain containing low dose of S antigen (LOV) and (4) maize grain containing a high dose of S antigen (HOV). Vaccines were administered on days 57, 85 and 110 of gestation. Sows' serum and colostrum were collected at farrowing and milk on day 6 post-challenge to quantify neutralizing antibodies (NABs) and cytokines. Piglets were challenged with PEDV 3-5 d after farrowing, and severity of disease and mortality assessed on day 11 post-challenge. Disease severity was lower in LOV and INJ compared with HOV and CON, whereas the survival rate increased in piglets from LOV sows compared with HOV and CON (p ≤ 0.001). Higher titers of NABs and lower levels of cytokine granulocyte-macrophage colony-stimulating factor in sows' milk were positively correlated with piglet survivability (p ≤ 0.05). These data suggest that feeding S protein in corn to pregnant sows protects nursing piglets against PEDV.

7.
Nutrients ; 13(12)2021 Nov 23.
Article in English | MEDLINE | ID: mdl-34959747

ABSTRACT

Non-alcoholic fatty liver disease (NAFLD) is a serious metabolic condition affecting millions of people worldwide. A "Western-style diet" has been shown to induce pediatric NAFLD with the potential disruption of skeletal muscle composition and metabolism. To determine the in vivo effect of a "Western-style diet" on pediatric skeletal muscle fiber type and fuel utilization, 28 juvenile Iberian pigs were fed either a control diet (CON) or a high-fructose, high-fat diet (HFF), with or without probiotic supplementation, for 10 weeks. The HFF diets increased the total triacylglycerol content of muscle tissue but decreased intramyocellular lipid (IMCL) content and the number of type I (slow oxidative) muscle fibers. HFF diets induced autophagy as assessed by LC3I and LC3II, and inflammation, as assessed by IL-1α. No differences in body composition were observed, and there was no change in insulin sensitivity, but HFF diets increased several plasma acylcarnitines and decreased expression of lipid oxidation regulators PGC1α and CPT1, suggesting disruption of skeletal muscle metabolism. Our results show that an HFF diet fed to juvenile Iberian pigs produces a less oxidative skeletal muscle phenotype, similar to a detraining effect, and reduces the capacity to use lipid as fuel, even in the absence of insulin resistance and obesity.


Subject(s)
Diet, Carbohydrate Loading/adverse effects , Diet, High-Fat/adverse effects , Fructose/administration & dosage , Muscle, Skeletal/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Animals , Diet, Western/adverse effects , Disease Models, Animal , Energy Metabolism , Insulin Resistance , Muscle Fibers, Skeletal/metabolism , Muscle Fibers, Skeletal/pathology , Muscle, Skeletal/pathology , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/pathology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Probiotics/administration & dosage , Swine , Triglycerides/metabolism
8.
Animals (Basel) ; 11(11)2021 Nov 06.
Article in English | MEDLINE | ID: mdl-34827908

ABSTRACT

Suinfort®, a commercial semen supplement demonstrated to increase fertility and litter size in commercial sows, was tested to improve reproductive performance in Iberian sows. A total of 1430 Iberian sows were artificially inseminated (AI) with semen from Duroc boars and assigned by parity to receive the seminal additive Suinfort® containing 2 IU oxytocin, 5 µg lecirelin, and 2 mM caffeine (SF; n = 1713 AI), or to serve as non-supplemented controls (CON; n = 2625 AI). CON showed a lower fertility comparing to winter for spring (p = 0.001) and summer (p < 0.001); summer was lower than autumn (p = 0.012). SF removed this seasonal effect (p > 0.05). Fertility was significantly higher for SF sows during summer (p = 0.025) and autumn (p = 0.004). Total born, live-born, stillborn, and mummified piglets did not differ between CON and SF but were impacted by the season, with total and live-born decreasing in summer compared with autumn (p < 0.001) and winter (p = 0.005). In conclusion, seminal supplementation with Suinfort® improved the fertility of Iberian sows during periods of seasonal infertility.

9.
Animals (Basel) ; 11(11)2021 Nov 16.
Article in English | MEDLINE | ID: mdl-34828007

ABSTRACT

The Iberian pig is an autochthonous breed from the Iberian Peninsula highly valued for its meat. The sows are often bred as Iberian × Duroc crossings for increased efficiency. Since sow parity and season affect the reproductive performance, we evaluated two-year records from a commercial farrow-to-finish farm (live, stillborn, and mummified piglets after artificial insemination, AI). A total of 1293 Iberian sows were inseminated with semen from 57 boars (3024 AI). The effects of parity (gilts, 1, 2-4, 5-10, and >10 farrowings) and season were analyzed by linear mixed-effects models (LME). The data were fitted to cosinor models to investigate seasonal effects within parity groups. The effects of maximum daily temperature (MDT) and day length change (DLC) during spermatogenesis, pre-AI, and post-AI periods were analyzed with LME. The 2-4 group was the optimal one for parity. A seasonal effect was evident between spring-summer (lower fertility/prolificacy) and autumn-winter (higher). Cosinor showed that the seasonal drop in reproductive performance occurs earlier in Iberian sows than in other breeds, more evident in gilts. MDT negatively affected performance in all periods and DLC in spermatogenesis and pre-AI. These results are relevant for the improvement of Iberian sows' intensive farming.

10.
J Nutr ; 151(5): 1139-1149, 2021 05 11.
Article in English | MEDLINE | ID: mdl-33693900

ABSTRACT

BACKGROUND: Fructose consumption has been linked to nonalcoholic fatty liver disease (NAFLD) in children. However, the effect of high-fructose corn syrup (HFCS) compared with sucrose in pediatric NAFLD has not been investigated. OBJECTIVES: We tested whether the isocaloric substitution of dietary sucrose by HFCS would increase the severity of NAFLD in juvenile pigs, and whether this effect would be associated with changes in gut histology, SCFA production, and microbial diversity. METHODS: Iberian pigs, 53-d-old and pair-housed in pens balanced for weight and sex, were randomly assigned to receive a mash diet top-dressed with increasing amounts of sucrose (SUC; n = 3 pens; 281.6-486.8 g/kg diet) or HFCS (n = 4; 444.3-724.8 g/kg diet) during 16 wk. Diets exceeded the animal's energy requirements by providing sugars in excess, but met the requirements for all other nutrients. Animals were killed at 165 d of age after blood sampling, and liver, muscle, and gut were collected for histology, metabolome, and microbiome analyses. Data were analyzed by multivariate and univariate statistics. RESULTS: Compared with SUC, HFCS increased subcutaneous fat, triacylglycerides in plasma, and butyrate in colon (P ≤ 0.05). In addition, HFCS decreased UMP and short-chain acyl carnitines in liver, and urea nitrogen and creatinine in serum (P ≤ 0.05). Microbiome analysis showed a 24.8% average dissimilarity between HFCS and SUC associated with changes in SCFA-producing bacteria. Body weight gain, intramuscular fat, histological and serum markers of liver injury, and circulating hormones, glucose, and proinflammatory cytokines did not differ between diets. CONCLUSIONS: Fructose consumption derived from HFCS promoted butyrate synthesis, triglyceridemia, and subcutaneous lipid deposition in juvenile Iberian pigs, but did not increase serum and histological markers of NAFLD compared with a sucrose-enriched diet. Longer studies could be needed to observe differences in liver injury among sugar types.


Subject(s)
Adiposity/drug effects , Dietary Sucrose/adverse effects , High Fructose Corn Syrup/adverse effects , Non-alcoholic Fatty Liver Disease/etiology , Triglycerides/blood , Animals , Dietary Sucrose/administration & dosage , Fatty Acids, Volatile/metabolism , Female , Gastrointestinal Microbiome , Gastrointestinal Tract/anatomy & histology , Gastrointestinal Tract/drug effects , High Fructose Corn Syrup/administration & dosage , Male , Random Allocation , Swine
11.
PLoS One ; 15(12): e0244013, 2020.
Article in English | MEDLINE | ID: mdl-33320899

ABSTRACT

The generation of large metabolomic data sets has created a high demand for software that can fit statistical models to one-metabolite-at-a-time on hundreds of metabolites. We provide the %polynova_2way macro in SAS to identify metabolites differentially expressed in study designs with a two-way factorial treatment and hierarchical design structure. For each metabolite, the macro calculates the least squares means using a linear mixed model with fixed and random effects, runs a 2-way ANOVA, corrects the P-values for the number of metabolites using the false discovery rate or Bonferroni procedure, and calculate the P-value for the least squares mean differences for each metabolite. Finally, the %polynova_2way macro outputs a table in excel format that combines all the results to facilitate the identification of significant metabolites for each factor. The macro code is freely available in the Supporting Information.


Subject(s)
Liver/metabolism , Metabolome , Metabolomics/methods , Software , Animals , Diet, High-Fat/adverse effects , Fatty Liver/etiology , Fatty Liver/prevention & control , Liver/microbiology , Mass Spectrometry/methods , Probiotics/therapeutic use , Swine
12.
Amino Acids ; 52(9): 1319-1335, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32974749

ABSTRACT

When neonatal pigs continuously fed formula are supplemented with leucine pulses, muscle protein synthesis and body weight gain are enhanced. To identify the responsible mechanisms, we combined plasma metabolomic analysis with transcriptome expression of the transcriptome and protein catabolic pathways in skeletal muscle. Piglets (n = 23, 7-day-old) were fed continuously a milk replacement formula via orogastric tube for 21 days with an additional parenteral infusion (800 µmol kg-1 h-1) of either leucine (LEU) or alanine (CON) for 1 h every 4 h. Plasma metabolites were measured by liquid chromatography-mass spectrometry. Gene and protein expression analyses of longissimus dorsi muscle were performed by RNA-seq and Western blot, respectively. Compared with CON, LEU pigs had increased plasma levels of leucine-derived metabolites, including 4-methyl-2-oxopentanoate, beta-hydroxyisovalerate, ß-hydroxyisovalerylcarnitine, and 3-methylglutaconate (P ≤ 0.05). Leucine pulses downregulated transcripts enriched in the Kyoto Encyclopedia of Genes and Genomes terms "spliceosome," "GAP junction," "endocytosis," "ECM-receptor interaction," and "DNA replication". Significant correlations were identified between metabolites derived from leucine catabolism and muscle genes involved in protein degradation, transcription and translation, and muscle maintenance and development (P ≤ 0.05). Further, leucine pulses decreased protein expression of autophagic markers and serine/threonine kinase 4, involved in muscle atrophy (P ≤ 0.01). In conclusion, results from our studies support the notion that leucine pulses during continuous enteral feeding enhance muscle mass gain in neonatal pigs by increasing protein synthetic activity and downregulating protein catabolic pathways through concerted responses in the transcriptome and metabolome.


Subject(s)
Dietary Supplements , Leucine/pharmacology , Metabolome/drug effects , Muscle Proteins/metabolism , Muscle, Skeletal/cytology , Muscular Atrophy/pathology , Transcriptome/drug effects , Animals , Animals, Newborn , Female , Leucine/administration & dosage , Muscle Proteins/genetics , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Muscular Atrophy/drug therapy , Muscular Atrophy/metabolism , Phosphorylation , Swine
13.
Am J Physiol Endocrinol Metab ; 319(3): E592-E606, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32744096

ABSTRACT

The objective of this study was to investigate whether juvenile Iberian pigs with diet-induced nonalcoholic fatty liver disease (NAFLD), cholestasis, and gut dysbiosis would develop histological and metabolic markers of neurodegeneration in the frontal cortex (FC) and whether supplementing probiotics would influence the response to the diet. Twenty-eight juvenile Iberian pigs were fed for 10 wk either a control (CON) or high-fructose high-fat (HFF) diet with or without a commercial probiotic mixture. Compared with CON, HFF-fed pigs had a decreased number of neurons and an increase in reactive astrocytes in FC tissue. There was also a decrease in one-carbon metabolites choline and betaine and a marked accumulation of bile acids, cholesteryl esters, and polyol pathway intermediates in FC of HFF-fed pigs, which were associated with markers of neurodegeneration and accentuated with the severity of NAFLD. Betaine depletion in FC tissue was negatively correlated with choline-derived phospholipids in colon content, whereas primary conjugated bile acids in FC were associated with cholestasis. Plasma kynurenine-to-tryptophan quotient, as a marker of indoleamine 2,3-dioxygenase activity, and intestinal dysbiosis were also correlated with neuronal loss and astrogliosis. Recognition memory test and FC levels of amyloid-ß and phosphorylated Tau did not differ between diets, whereas probiotics increased amyloid-ß and memory loss in HFF-fed pigs. In conclusion, our results show evidence of neurodegeneration in FC of juvenile Iberian pigs and establish a novel pediatric model to investigate the role of gut-liver-brain axis in diet-induced NAFLD.


Subject(s)
Neurodegenerative Diseases/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Animals , Cholestasis/metabolism , Cytokines/metabolism , Diet , Diet, High-Fat , Dysbiosis/metabolism , Female , Frontal Lobe/metabolism , Frontal Lobe/pathology , Fructose/adverse effects , Gastrointestinal Microbiome , Male , Motor Activity , Neurodegenerative Diseases/complications , Neurodegenerative Diseases/psychology , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/pathology , Probiotics , Psychomotor Performance , Swine
14.
Animals (Basel) ; 10(3)2020 Feb 26.
Article in English | MEDLINE | ID: mdl-32111041

ABSTRACT

At weaning, 33 mixed parity Hypor sows received either an injection of 400 IU equine chorionic gonadotrophin and 200 IU human chorionic gonadotrophin (hCG) (PG600; n = 13), PG600 with an additional 200 IU hCG 24 h later (Gn800; n = 11), or served as non-injected controls (n = 9). All gonadotrophin treated sows received an injection of 750 IU hCG at 80 h after weaning to induce ovulation (designated as time 0 h). At 0, 24, 36, 40, 44, 48, and 60 h, all sows were subject to transrectal ultrasonography to determine numbers and sizes of large (>6 mm) follicles and time of ovulation. The interval from injection of 750 IU hCG to ovulation was shorter in Gn800 compared to PG600 sows (p = 0.02), and more Gn800 sows had ≥9 preovulatory follicles compared to PG600 and controls (p = 0.02 and 0.003, respectively). Follicular cysts were evident in both PG600 and Gn800 sows.

15.
Am J Physiol Gastrointest Liver Physiol ; 318(3): G582-G609, 2020 03 01.
Article in English | MEDLINE | ID: mdl-32003601

ABSTRACT

To investigate the role of bile acids (BAs) in the pathogenesis of diet-induced nonalcoholic steatohepatitis (NASH), we fed a "Western-style diet" [high fructose, high fat (HFF)] enriched with fructose, cholesterol, and saturated fat for 10 wk to juvenile Iberian pigs. We also supplemented probiotics with in vitro BA deconjugating activity to evaluate their potential therapeutic effect in NASH. Liver lipid and function, cytokines, and hormones were analyzed using commercially available kits. Metabolites, BAs, and fatty acids were measured by liquid chromatography-mass spectrometry. Histology and gene and protein expression analyses were performed using standard protocols. HFF-fed pigs developed NASH, cholestasis, and impaired enterohepatic Farnesoid-X receptor (FXR)-fibroblast growth factor 19 (FGF19) signaling in the absence of obesity and insulin resistance. Choline depletion in HFF livers was associated with decreased lipoprotein and cholesterol in serum and an increase of choline-containing phospholipids in colon contents and trimethylamine-N-oxide in the liver. Additionally, gut dysbiosis and hyperplasia increased with the severity of NASH, and were correlated with increased colonic levels of choline metabolites and secondary BAs. Supplementation of probiotics in the HFF diet enhanced NASH, inhibited hepatic autophagy, increased excretion of taurine and choline, and decreased gut microbial diversity. In conclusion, dysregulation of BA homeostasis was associated with injury and choline depletion in the liver, as well as increased biliary secretion, gut metabolism and excretion of choline-based phospholipids. Choline depletion limited lipoprotein synthesis, resulting in hepatic steatosis, whereas secondary BAs and choline-containing phospholipids in colon may have promoted dysbiosis, hyperplasia, and trimethylamine synthesis, causing further damage to the liver.NEW & NOTEWORTHY Impaired Farnesoid-X receptor (FXR)-fibroblast growth factor 19 (FGF19) signaling and cholestasis has been described in nonalcoholic fatty liver disease (NAFLD) patients. However, therapeutic interventions with FXR agonists have produced contradictory results. In a swine model of pediatric nonalcoholic steatohepatitis (NASH), we show that the uncoupling of intestinal FXR-FGF19 signaling and a decrease in FGF19 levels are associated with a choline-deficient phenotype of NASH and increased choline excretion in the gut, with the subsequent dysbiosis, colonic hyperplasia, and accumulation of trimethylamine-N-oxide in the liver.


Subject(s)
Bile Acids and Salts/metabolism , Choline/metabolism , Colon/metabolism , Colon/microbiology , Fibroblast Growth Factors/metabolism , Gastrointestinal Microbiome , Liver/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Age Factors , Animals , Colon/pathology , Disease Models, Animal , Dysbiosis , Female , Hyperplasia , Liver/pathology , Male , Non-alcoholic Fatty Liver Disease/microbiology , Non-alcoholic Fatty Liver Disease/pathology , Non-alcoholic Fatty Liver Disease/prevention & control , Probiotics/administration & dosage , Signal Transduction , Sus scrofa
16.
J Pediatr Gastroenterol Nutr ; 70(5): e94-e99, 2020 05.
Article in English | MEDLINE | ID: mdl-31990866

ABSTRACT

OBJECTIVES: Bile acid (BA) homeostasis is regulated by intestinal cellular signaling involving the farnesoid X receptor (FXR) and fibroblast growth factor 19 (FGF19) secretion. Using preterm and term pigs as a model, we examined postnatal changes in expression of the FXR-FGF19 axis that is poorly characterized in human infants. METHODS: Pigs delivered by caesarean section at 10-day preterm and near full term (115-day gestation) were fitted with orogastric and umbilical arterial catheters. Pigs were fed combined parenteral nutrition and minimal enteral nutrition for 5 days, followed by milk formula until 26 d days. Plasma and tissue samples were collected at days 0, 5, 11, and 26. Plasma FGF19 concentration and liver and distal intestinal gene expression of FGF19 and other FXR target genes were quantified. RESULTS: Plasma FGF19 levels were lower in preterm versus term newborn pigs (P < 0.05), increased markedly by 5 days, especially in preterm pigs, and decreased in both groups until day 26. Likewise, intestinal FXR and FGF19 expression was lower (P ≤ 0.05) in premature versus term newborn pigs and decreased (P ≤ 0.05) between days 5 and 26. Hepatic expression of cholesterol 7α-hydroxylase (CYP7A1) was inversely correlated with plasma FGF19 in both groups. CONCLUSIONS: We conclude that the activity of FXR-FGF19 axis is lower in preterm than in term newborn pigs but increases transiently and then declines by the first month of age. We also provide supportive evidence of negative feedback between plasma FGF19 and hepatic CYP7A1 expression.


Subject(s)
Cesarean Section , Receptors, Cytoplasmic and Nuclear , Animals , Bile Acids and Salts , Female , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Liver/metabolism , Pregnancy , Receptors, Cytoplasmic and Nuclear/genetics , Swine , Up-Regulation
17.
Front Mol Neurosci ; 12: 29, 2019.
Article in English | MEDLINE | ID: mdl-30853888

ABSTRACT

Calcium is one of the most important signaling factors in mammalian cells. Specific temporal and spatial calcium signals underlie fundamental processes such as cell growth, development, circadian rhythms, neurotransmission, hormonal actions and apoptosis. In order to translate calcium signals into cellular processes a vast number of proteins bind this ion with affinities from the nanomolar to millimolar range. Using classical biochemical methods an impressing number of calcium binding proteins (CBPs) have been discovered since the late 1960s, some of which are expressed ubiquitously, others are more restricted to specific cell types. In the nervous system expression patterns of different CBPs have been used to discern different neuronal cell populations, especially before advanced methods like single-cell transcriptomics and activity recording were available to define neuronal identity. However, understanding CBPs and their interacting proteins is still of central interest. The post-genomic era has coined the term "calciomics," to describe a whole new research field, that engages in the identification and characterization of CBPs and their interactome. Secretagogin is a CBP, that was discovered 20 years ago in the pancreas. Consecutively it was found also in other organs including the nervous system, with characteristic expression patterns mostly forming cell clusters. Its regional expression and subcellular location together with the identification of protein interaction partners implicated, that secretagogin has a central role in hormone secretion. Meanwhile, with the help of modern proteomics a large number of actual and putative interacting proteins has been identified, that allow to anticipate a much more complex role of secretagogin in developing and adult neuronal cells. Here, we review recent findings that appear like puzzle stones of a greater picture.

18.
Stem Cell Rev Rep ; 14(6): 823-836, 2018 Dec.
Article in English | MEDLINE | ID: mdl-29980981

ABSTRACT

The paternally-imprinted genes insulin-like growth factor 2 (IGF2), H19, delta-like homologue 1 (DLK1), and maternally-expressed gene 3 (MEG3) are expressed from the tandem gene loci IGF2-H19 and DLK1-MEG3, which play crucial roles in initiating embryogenesis and development. The erasure of imprinting (EOI) at differentially methylated regions (DMRs) which regulate the expression of these genes maintains the developmental quiescence of primordial germ cells (PGCs) migrating through the embryo proper during embryogenesis and prevents them from forming teratomas. To address the potential involvement of the IGF2-H19 and DLK1-MEG3 loci in the pathogenesis of embryonal carcinoma (EC), we investigated their genomic imprinting at DMRs in the human PGC-derived EC cell line NTera-2 (NT2). We observed EOI at the IGF2-H19 locus and, somewhat to our surprise, a loss of imprinting (LOI) at the DLK1-MEG3 locus. As a result, NT2 cells express imprinted gene ratios from these loci such that there are i) low levels of the proliferation-promoting IGF2 relative to ii) high levels of the proliferation-inhibiting long noncoding RNA (lncRNA) H19 and iii) high levels of proliferation-promoting DLK1 relative to iv) low levels of the proliferation-inhibiting lncRNA MEG3. Consistent with this pattern of expression, the knockdown of DLK1 mRNA by shRNA resulted in decreased in vitro cell proliferation and in vivo tumor growth as well as decreased in vivo organ seeding by NT2 cells. Furthermore, treatment of NT2 cells with the DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (5-azaD) inhibited their proliferation. This inhibition was accompanied by changes in expression of both tandem gene sets: a decrease in the expression of DLK1 and upregulation of the proliferation-inhibiting lncRNA MEG3, and at the same time upregulation of IGF2 and downregulation of the lncRNA H19. These results suggest that the DLK1-MEG3 locus, and not the IGF2-H19 locus, drives the tumorigenicity of NT2 cells. Based on these results, we identified DLK1 as a novel treatment target for EC that could be downregulated by 5-azaD.


Subject(s)
Carcinoma, Embryonal , Genetic Loci , Genomic Imprinting , Insulin-Like Growth Factor II , Intercellular Signaling Peptides and Proteins , Membrane Proteins , Neoplasm Proteins , RNA, Long Noncoding , RNA, Neoplasm , Calcium-Binding Proteins , Carcinoma, Embryonal/genetics , Carcinoma, Embryonal/metabolism , Carcinoma, Embryonal/pathology , Carcinoma, Embryonal/therapy , Cell Line, Tumor , Humans , Insulin-Like Growth Factor II/genetics , Insulin-Like Growth Factor II/metabolism , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Neoplasm Proteins/genetics , Neoplasm Proteins/metabolism , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , RNA, Neoplasm/genetics , RNA, Neoplasm/metabolism
19.
Cell Physiol Biochem ; 45(6): 2225-2232, 2018.
Article in English | MEDLINE | ID: mdl-29587258

ABSTRACT

BACKGROUND/AIMS: Aging of the arterial endothelial cells results in the appearance of their inflammatory phenotype, which may predispose patients to the acceleration of arteriosclerosis. We studied the effect of serum from patients with peripheral artery disease (PAD) on the senescence of human aortic endothelial cells (HAEC) and how that process is modulated by sulodexide. METHODS: HAEC replicative aging in vitro was studied in the presence of 10% PAD-serum (PAD Group) or10%PAD serum and Sulodexide 0.5 LRU/mL (PAD-SUL group). In control group cells were cultured in medium supplemented with 10% fetal bovine serum. All studied parameters were evaluated at the beginning and at the end of the study, in all experimental groups. Population doubling time (PDT) was studied from the cells growth rate after repeated passages, and senescence-associated beta- galactosidase activity (SA-ß gal activity) was measured with the fluorescence flow cytometry. Expression of IL6, vWF, p21 and p53 genes was measured with the real-time polymerase chain reaction (Real-Time PCR). Concentrations of IL6 and vWF were measured with the standard ELISA kits. RESULTS: PAD serum accelerated the senescence of HAEC as reflected by increased, compared to control, expression of the IL6 gene (+43%, p<0.05) vWF gene (+443%, p<0.01), p21 gene (+ 124%, p<0.01) and p53 gene (+ 85%, p<0.01). Secretion of IL6 and vWF was higher in that group: + 101%, p<0.01 and + 78%, p<0.01, respectively, as compared to control. Also, SA-ß gal activity was higher in the PAD group (+33%, p<0.05) than in the control group. In the PAD group PDT was longer (+108%, p<0.01) as compared to control. Simultaneous use of Sulodexide with PAD serum significantly reduced all the above described senescent changes in HAEC. CONCLUSIONS: PAD serum accelerates the aging of HAEC which may result in the faster progression of arteriosclerosis. Sulodexide reduces PAD induced senescence of HAEC, which results in lower inflammatory and thrombogenic activity of these cells.


Subject(s)
Anticoagulants/pharmacology , Cellular Senescence/drug effects , Endothelial Cells/drug effects , Glycosaminoglycans/pharmacology , Peripheral Arterial Disease/blood , Cell Line , Cell Proliferation/drug effects , Endothelial Cells/pathology , Humans , Peripheral Arterial Disease/pathology
20.
J Crit Care ; 43: 294-299, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28968524

ABSTRACT

PURPOSE: The objective of this study was to assess the vitamin D kinetics in critically ill patients by performing periodic serum vitamin D measurements in short time intervals in the initial phase of a critical illness. MATERIALS AND METHODS: We performed vitamin D serum measurements: at admission and then in 12-hour time intervals. The minimum number of vitamin D measurements was 4, and the maximum was 8 per patient. RESULTS: A total of 363 patients were evaluated for participation, and 20 met the inclusion criteria. All patients had an initial serum vitamin D level between 10.6 and 39ng/mL. Nineteen patients had vitamin D levels between 10 and 30ng/mL, which means that they had vitamin D insufficiency or deficiency, and only one patient had a normal vitamin D serum plasma level. We observed that the median of the vitamin D level decreases until the fourth measurement then stabilizes around the 4th and 5th measurement and then appears to increase unevenly. The highest drop is at the very beginning. CONCLUSIONS: The vitamin D serum level is changeable in the initial phase of a critical illness. We hypothesize that the serum vitamin D concentration can mirror the severity of illness.


Subject(s)
Vitamin D Deficiency/blood , Vitamin D/metabolism , Acute Disease , Adult , Aged , Critical Illness , Diagnostic Tests, Routine , Female , Hospitalization/statistics & numerical data , Humans , Male , Middle Aged , Plasma , Prospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...