Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Mater Horiz ; 11(19): 4791-4801, 2024 Sep 30.
Article in English | MEDLINE | ID: mdl-39037285

ABSTRACT

The photon avalanche (PA) process that emerges in lanthanide-doped crystals yields a threshold and highly nonlinear (of the power law order >5) optical response to photoexcitation. PA emission is the outcome of the excited-state absorption combined with a cross-relaxation process, which creates positive and efficient energy looping. In consequence, this combination of processes should be highly susceptible to small perturbations in energy distribution and can thus be hindered by other competitive "parasitic" processes such as energy transfer (ET) to quenching sites. Although luminescence quenching is a well-known phenomenon, exact mechanisms of the susceptibility of PA to resonant energy transfer (RET) remain poorly understood, limiting its practical applications. A deeper understanding of these mechanisms may pave the way to new areas of PA exploitation. This study focuses on the investigation of the LiYF4:3%Tm3+ PA system co-doped with Nd3+ acceptor ions, which are found to impact both the looping and emitting levels. This effectively disrupts the PA emission, causing an increase in the PA threshold (Ith) and a decrease in the PA nonlinearity (Smax). Our complementary modelling results reveal that ET from the looping level increases Ith and Smax, whereas ET from the emitting level diminishes Smax and the final emission intensity. Ultimately, significant PA emission quenching demonstrates a high relative sensitivity (SR) to infinitesimal amounts of Nd3+ acceptors, highlighting the potential for PA to be utilized as an ultra-sensitive, fluorescence-based reporting mechanism that is suitable for the detection and quantification of physical and biological phenomena or reactions.

2.
Adv Mater ; 35(42): e2304390, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37572370

ABSTRACT

Data processing and storage in electronic devices are typically performed as a sequence of elementary binary operations. Alternative approaches, such as neuromorphic or reservoir computing, are rapidly gaining interest where data processing is relatively slow, but can be performed in a more comprehensive way or massively in parallel, like in neuronal circuits. Here, time-domain all-optical information processing capabilities of photon-avalanching (PA) nanoparticles at room temperature are discovered. Demonstrated functionality resembles properties found in neuronal synapses, such as: paired-pulse facilitation and short-term internal memory, in situ plasticity, multiple inputs processing, and all-or-nothing threshold response. The PA-memory-like behavior shows capability of machine-learning-algorithm-free feature extraction and further recognition of 2D patterns with simple 2 input artificial neural network. Additionally, high nonlinearity of luminescence intensity in response to photoexcitation mimics and enhances spike-timing-dependent plasticity that is coherent in nature with the way a sound source is localized in animal neuronal circuits. Not only are yet unexplored fundamental properties of photon-avalanche luminescence kinetics studied, but this approach, combined with recent achievements in photonics, light confinement and guiding, promises all-optical data processing, control, adaptive responsivity, and storage on photonic chips.

3.
Sci Rep ; 12(1): 13699, 2022 Aug 11.
Article in English | MEDLINE | ID: mdl-35953508

ABSTRACT

Monolayers of transition-metal dichalcogenides with direct band gap located at the binary [Formula: see text] points of the Brillouin zone are promising materials for applications in opto- and spin-electronics due to strongly enhanced Coulomb interactions and specific spin-valley properties. They furthermore represent a unique platform to study electron-electron and electron-phonon interactions in diverse exciton complexes. Here, we demonstrate processes in which the neutral biexciton and two negative trions, namely the spin-triplet and spin-singlet trions, upconvert light into a bright intravalley exciton in an hBN-encapsulated WS[Formula: see text] monolayer. We propose that the energy gains required in the polarized upconversion photoluminescence originate from different interactions including resonant optical phonons, a cooling of resident electrons and a non-local and an anisotropic electron-hole exchange, respectively. The temperature dependence (7-120 K) of the excitonic upconversion intensity obtained at excitation energies corresponding to the biexciton and trions provides insight into an increasing phonon population as well as a thermally enhanced electron scattering. Our study sheds new light on the understanding of excitonic spin and valley properties of van der Waals heterostructures and improves the understanding of photonic upconversion mechanisms in two-dimensional quantum materials.

SELECTION OF CITATIONS
SEARCH DETAIL