Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Biomed Opt Express ; 15(6): 3817-3830, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38867783

ABSTRACT

We analyze the influence of a person's age on the thicknesses and reduced scattering coefficients of the epidermis and dermis in visible part of the spectrum. Their values were assessed using a non-invasive technique which combines pulsed photothermal radiometry and diffuse reflectance spectroscopy with Monte Carlo modeling of light transport in a four-layer model of skin. The analysis is affected by the strong influences of the melanin content on the reduced scattering coefficient of the epidermis, a epi, and blood content in the case of dermis (a der). Separating their contributions reveals a significant decrease of a der with the person's age at an average rate of -0.25 mm-1 per decade, while the contribution of blood in the papillary dermis amounts to 1.0 mm-1%-1. Meanwhile, no influence of the person's age was found on a epi and the thicknesses of the epidermis or dermis.

2.
Lasers Surg Med ; 55(8): 724-733, 2023 10.
Article in English | MEDLINE | ID: mdl-37655731

ABSTRACT

OBJECTIVES: Assess the suitability of the technique for objective monitoring of laser tattoo removal by an extended treatment protocol. MATERIALS AND METHODS: One half of the tattoo in the first volunteer was treated with nanosecond and the other half with picosecond laser pulses at 1064 nm. In the second subject, four test areas were treated repeatedly using different radiant exposures from 1.5 to 6 J/cm2 . Measurements of diffuse reflectance spectra and photothermal radiometric transients were performed 4-20 weeks after each treatment session. Inverse Monte Carlo analysis based on a three-layer model of tattooed skin was applied to assess the tattoo characteristics and analyze their changes. RESULTS: The results clearly indicate a gradual reduction of the ink content and an increase of the subsurface depth of the tattoo layer with all treatments at a radiant exposure of 3 J/cm2 or higher. The observed dependences on laser pulse duration, radiant exposure, and a number of treatments are in excellent agreement with visual fading of the tattoo. CONCLUSIONS: The presented methodology enables noninvasive characterization of tattoos in human skin and objective monitoring of the laser removal treatment.


Subject(s)
Tattoo Removal , Humans , Healthy Volunteers , Monte Carlo Method , Skin , Lasers
3.
RSC Adv ; 13(35): 24830-24834, 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37608975

ABSTRACT

Controlled poration of lipid membranes is crucial for numerous biomimetic applications such as targeted drug delivery. Although several chemical and physical mechanisms have been proposed for the poration of synthetic membranes, achieving good temporal and spatial control remains a challenge. In this study, we introduce a novel method for membrane poration that utilizes the mechanical shockwave generated by the photo-acoustic effect, which occurs when an optically opaque microparticle is illuminated by a near-infrared laser of optical tweezers. We show that the shockwave effectively porates membranes of giant unilamellar vesicles in close proximity to the microparticle without damaging nearby cells, which is a desirable outcome for potential targeted drug delivery. The poration effect is nonspecific and operates on both liquid and gel phase membranes. Since the photo-acoustic effect can be triggered by standard optical tweezers, this method holds broad applicability in various experimental settings within the field of soft matter research.

4.
Acta Chim Slov ; 69(2): 448-457, 2022 Jun 14.
Article in English | MEDLINE | ID: mdl-35861088

ABSTRACT

NaYF4 nanoparticles codoped with Yb3+ and Tm3+ exhibit upconversion fluorescence in near-infrared and visible spectral range. Consequently, such upconverting nanoparticles (UCNPs) can be used as contrast agents in medical diagnostics and bioassays. However, they are not chemically stable in aqueous dispersions, especially in phosphate solutions. Protective amphiphilic-polymer coatings based on poly(maleic anhydride-alt-octadec-1-ene) (PMAO) and bis(hexamethylene)triamine (BHMT) were optimised to improve the chemical stability of UCNPs under simulated physiological conditions. Morphologies of the bare and coated UCNPs was inspected with transmission electron microscopy. All samples showed intense UC fluorescence at ~800 nm, typical for Tm3+. The colloidal stability of aqueous dispersions of bare and coated UCNPs was assessed by dynamic light scattering and measurements of zeta potential. The dissolution of UCNP in phosphate-buffered saline at 37 °C, was assessed potentiometrically by measuring the concentration of the dissolved fluoride. Protection against the dissolution of UCNPs was achieved by PMAO and PMAO crosslinked with BHMT.


Subject(s)
Nanoparticles , Polymers , Fluorides , Phosphates , Water
5.
Nat Commun ; 13(1): 1269, 2022 03 11.
Article in English | MEDLINE | ID: mdl-35277496

ABSTRACT

Optical microcavities and microlasers were recently introduced as probes inside living cells and tissues. Their main advantages are spectrally narrow emission lines and high sensitivity to the environment. Despite numerous novel methods for optical imaging in strongly scattering biological tissues, imaging at single-cell resolution beyond the ballistic light transport regime remains very challenging. Here, we show that optical microcavity probes embedded inside cells enable three-dimensional localization and tracking of individual cells over extended time periods, as well as sensing of their environment, at depths well beyond the light transport length. This is achieved by utilizing unique spectral features of the whispering-gallery modes, which are unaffected by tissue scattering, absorption, and autofluorescence. In addition, microcavities can be functionalized for simultaneous sensing of various parameters, such as temperature or pH value, which extends their versatility beyond the capabilities of standard fluorescent labels.


Subject(s)
Optical Imaging
6.
Nanotechnology ; 33(27)2022 Apr 20.
Article in English | MEDLINE | ID: mdl-35358963

ABSTRACT

Four distinct tungsten suboxide (WO3-x) nanomaterials were synthesized via chemical vapour transport reaction and the role of their crystal structures on the optical properties was studied. These materials grow either as thin, quasi-2D crystals with the WnO3n-1formula (in shape of platelets or nanotiles), or as nanowires (W5O14, W18O49). For the quasi-2D materials, the appearance of defect states gives rise to two indirect absorption edges. One is assigned to the regular bandgap occurring between the valence and the conduction band, while the second is a defect-induced band. While the bandgap values of platelets and nanotiles are in the upper range of the reported values for the suboxides, the nanowires' bandgaps are lower due to the higher number of free charge carriers. Both types of nanowires sustain localized surface plasmon resonances, as evidenced from the extinction measurements, whereas the quasi-2D materials exhibit excitonic transitions. All four materials have photoluminescence emission peaks in the UV region. The interplay of the crystal structure, oxygen vacancies and shape can result in changes in optical behaviour, and the understanding of these effects could enable intentional tuning of selected properties.

7.
Methods Appl Fluoresc ; 10(1)2021 Dec 22.
Article in English | MEDLINE | ID: mdl-34883469

ABSTRACT

The increasing interest in upconverting nanoparticles (UCNPs) in biodiagnostics and therapy fuels the development of biocompatible UCNPs platforms. UCNPs are typically nanocrystallites of rare-earth fluorides codoped with Yb3+and Er3+or Tm3+. The most studied UCNPs are based on NaYF4but are not chemically stable in water. They dissolve significantly in the presence of phosphates. To prevent any adverse effects on the UCNPs induced by cellular phosphates, the surfaces of UCNPs must be made chemically inert and stable by suitable coatings. We studied the effect of various phosphonate coatings on chemical stability andin vitrocytotoxicity of the Yb3+,Er3+-codoped NaYF4UCNPs in human endothelial cells obtained from cellular line Ea.hy926. Cell viability of endothelial cells was determined using the resazurin-based assay after the short-term (15 min), and long-term (24 h and 48 h) incubations with UCNPs dispersed in cell-culture medium. The coatings were obtained from tertaphosphonic acid (EDTMP), sodium alendronate and poly(ethylene glycol)-neridronate. Regardless of the coating conditions, 1 - 2 nm-thick amorphous surface layers were observed on the UCNPs with transmission electron microscopy. The upconversion fluorescence was measured in the dispersions of all UCNPs. Surafce quenching in aqueous suspensions of the UCNPs was reduced by the coatings. The dissolution degree of the UCNPs was determined from the concentration of dissolved fluoride measured with ion-selective electrode after the ageing of UCNPs in water, physiological buffer (i.e., phosphate-buffered saline-PBS) and cell-culture medium. The phosphonate coatings prepared at 80 °C significantly suppressed the dissolution of UCNPs in PBS while only minor dissolution of bare and coated UCNPs was measured in water and cell-culture medium. The viability of human endothelial cells was significantly reduced when incubated with UCNPs, but it increased with the improved chemical stability of UCNPs by the phosphonate coatings with negligible cytotoxicity when coated with EDTMP at 80 °C.


Subject(s)
Nanoparticles , Organophosphonates , Endothelial Cells , Fluorides , Humans , Organophosphonates/pharmacology , Yttrium
8.
ACS Omega ; 6(36): 23233-23242, 2021 Sep 14.
Article in English | MEDLINE | ID: mdl-34549124

ABSTRACT

Titanium foils of different thicknesses were anodized, and the photocatalytic activity of the resulting TiO2 nanotube (NT) layers was determined. All of the titanium foils were anodized simultaneously under identical experimental conditions to avoid the influence of the aging of the anodizing electrolyte and other anodization parameters, such as voltage, time, and temperature. To characterize the microstructures of the titanium foils, we used electron backscatter diffraction (EBSD), scanning electron microscopy (SEM), and stylus profilometry analyses. The adhesion was tested with a Scotch tape test and the morphology of the TiO2 NTs was studied in detail using the SEM technique, while the surface areas of the TiO2 NTs were determined using a three-dimensional (3D) optical interference profilometer. With X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), the chemical composition and structure of TiO2 oxide were established. The degradation of caffeine under UV irradiation was measured with a high-precision UV-vis-IR spectrophotometer, and the photoluminescence method was used to confirm the photocatalytic behavior of the TiO2 NT layers. The influence of the intrinsic properties, including twinning and the grain boundaries of the starting titanium foils with similar chemical compositions, was determined and explained. Finally, we identified the main characteristics that define a highly effective and flexible photocatalyst.

9.
Dalton Trans ; 50(19): 6588-6597, 2021 May 18.
Article in English | MEDLINE | ID: mdl-33899872

ABSTRACT

Upconverting nanoparticles (UCNPs) are being extensively investigated for applications in bioimaging because of their ability to emit ultraviolet, visible, and near-infrared light. NaYF4 is one of the most suitable host matrices for producing high-intensity upconversion fluorescence; however, UCNPs based on NaYF4 are not chemically stable in aqueous media. To prevent dissolution, their surfaces should be modified. We studied the formation of protective phosphonate coatings made of ethylenediamine(tetramethylenephosphonic acid), alendronic acid, and poly(ethylene glycol)-neridronate on cubic NaYF4 nanoparticles and hexagonal Yb3+,Er3+-doped upconverting NaYF4 nanoparticles (ß-UCNPs). The effects of synthesis temperature and ultrasonic agitation on the quality of the coatings were studied. The formation of the coatings was investigated by transmission electron microscopy, zeta-potential measurements, and infrared spectroscopy. The quality of the phosphonate coatings was examined with respect to preventing the dissolution of the NPs in phosphate-buffered saline (PBS). The dissolution tests were carried out under physiological conditions (37 °C and pH 7.4) for 3 days and were followed by measurements of the dissolved fluoride with an ion-selective electrode. We found that the protection of the phosphonate coatings can be significantly increased by synthesizing them at 80 °C. At the same time, the coatings obtained at this temperature suppressed the surface quenching of the upconversion fluorescence in ß-UCNPs.


Subject(s)
Fluorides/chemistry , Nanoparticles/chemistry , Organophosphonates/chemistry , Yttrium/chemistry , Alendronate/chemistry , Fluorescence , Hydrogen-Ion Concentration , Solubility , Surface Properties , Temperature , Ultrasonic Waves
10.
Sensors (Basel) ; 21(1)2021 Jan 05.
Article in English | MEDLINE | ID: mdl-33466275

ABSTRACT

We have augmented a recently introduced method for noninvasive analysis of skin structure and composition and applied it to monitoring of dynamical processes in traumatic bruises. The approach combines diffuse reflectance spectroscopy in visible spectral range and pulsed photothermal radiometry. Data from both techniques are analyzed simultaneously using a numerical model of light and heat transport in a four-layer model of human skin. Compared to the earlier presented approach, the newly introduced elements include two additional chromophores (ß-carotene and bilirubin), individually adjusted thickness of the papillary dermal layer, and analysis of the bruised site using baseline values assessed from intact skin in its vicinity. Analyses of traumatic bruises in three volunteers over a period of 16 days clearly indicate a gradual, yet substantial increase of the dermal blood content and reduction of its oxygenation level in the first days after injury. This is followed by the emergence of bilirubin and relaxation of all model parameters towards the values characteristic for healthy skin approximately two weeks after the injury. The assessed parameter values and time dependences are consistent with existing literature. Thus, the presented methodology offers a viable approach for objective characterization of the bruise healing process.


Subject(s)
Bilirubin/analysis , Contusions/diagnosis , Contusions/therapy , Photothermal Therapy , Pulsed Radiofrequency Treatment , Radiometry/methods , Skin/physiopathology , Bilirubin/metabolism , Contusions/metabolism , Female , Humans , Male , Oxygen/blood , Skin/metabolism , Spectrophotometry , beta Carotene
11.
Biomed Opt Express ; 11(3): 1679-1696, 2020 Mar 01.
Article in English | MEDLINE | ID: mdl-32206435

ABSTRACT

We have recently introduced a novel methodology for the noninvasive analysis of the structure and composition of human skin in vivo. The approach combines pulsed photothermal radiometry (PPTR), involving time-resolved measurements of mid-infrared emission after irradiation with a millisecond light pulse, and diffuse reflectance spectroscopy (DRS) in the visible part of the spectrum. Simultaneous fitting of both data sets with respective predictions from a numerical model of light transport in human skin enables the assessment of the contents of skin chromophores (melanin, oxy-, and deoxy-hemoglobin), as well as scattering properties and thicknesses of the epidermis and dermis. However, the involved iterative optimization of 14 skin model parameters using a numerical forward model (i.e., inverse Monte Carlo - IMC) is computationally very expensive. In order to overcome this drawback, we have constructed a very fast predictive model (PM) based on machine learning. The PM involves random forests, trained on ∼9,000 examples computed using our forward MC model. We show that the performance of such a PM is very satisfying, both in objective testing using cross-validation and in direct comparisons with the IMC procedure. We also present a hybrid approach (HA), which combines the speed of the PM with versatility of the IMC procedure. Compared with the latter, the HA improves both the accuracy and robustness of the inverse analysis, while significantly reducing the computation times.

12.
Lasers Surg Med ; 51(9): 774-784, 2019 11.
Article in English | MEDLINE | ID: mdl-31194264

ABSTRACT

BACKGROUND AND OBJECTIVES: The aim of this study was to determine the temperature depth profiles induced in human skin in vivo by using a pulsed 975 nm diode laser (with 5 ms pulse duration) and compare them with those induced by the more common 532 nm (KTP) and 1,064 nm (Nd:YAG) lasers. Quantitative assessment of the energy deposition characteristics in human skin at 975 nm should help design of safe and effective treatment protocols when using such lasers. STUDY DESIGN/MATERIALS AND METHODS: Temperature depth profiles induced in the human skin by the three lasers were determined using pulsed photothermal radiometry (PPTR). This technique involves time-resolved measurement of mid-infrared emission from the irradiated test site and reconstruction of the laser-induced temperature profiles using an earlier developed optimization algorithm. Measurements were performed on volar sides of the forearms in seven volunteers with healthy skin. At irradiation spot diameters of 3-4 mm, the radiant exposures were 0.24, 0.36, and 5.7 J/cm2 for the 975, 532, and 1,064 nm lasers, respectively. RESULTS: Upon normalization to the same radiant exposure of 1 J/cm 2 , the assessed maximum temperature rise in the epidermis averaged 0.8 °C for the 975 nm laser, 7.4 °C for the 532 nm, and 0.6 °C for the 1,064 nm laser. The characteristic subsurface depth to which 50% of the absorbed laser energy was deposited was on average 0.31 mm at 975 nm irradiation, and slightly deeper at 1,064 nm, and 0.15 mm at 532 nm. The experimentally obtained relations were reproduced in a dedicated numerical simulation. CONCLUSIONS: The assessed energy deposition characteristics show that the pulsed 975 nm diode laser is very suitable for controlled heating of the upper dermis as required, for example, for nonablative skin rejuvenation. The risks of nonselective overheating of the epidermis and subcutis are significantly reduced in comparison with irradiation at 532 and 1,064 nm, respectively. Lasers Surg. Med. © 2019 Wiley Periodicals, Inc.


Subject(s)
Hot Temperature , Lasers, Semiconductor , Lasers, Solid-State , Skin/radiation effects , Adult , Female , Humans , Male , Middle Aged
13.
Biomed Opt Express ; 10(2): 944-960, 2019 Feb 01.
Article in English | MEDLINE | ID: mdl-30800525

ABSTRACT

In this proof-of-concept study we combine two optical techniques to enable assessment of structure and composition of human skin in vivo: Pulsed photothermal radiometry (PPTR), which involves measurements of transient dynamics in mid-infrared emission from sample surface after exposure to a light pulse, and diffuse reflectance spectroscopy (DRS) in visible part of the spectrum. The analysis involves simultaneous fitting of measured PPTR signals and DRS with corresponding predictions of a Monte Carlo model of light-tissue interaction. By using a four-layer optical model of skin we obtain a good match between the experimental and model data when scattering properties of the epidermis and dermis are also optimized on an individual basis. The assessed parameter values correlate well with literature data and demonstrate the expected trends in controlled tests involving temporary obstruction of peripheral blood circulation using a pressure cuff, and acute as well as seasonal sun tanning.

14.
J Biomed Opt ; 23(12): 1-10, 2018 11.
Article in English | MEDLINE | ID: mdl-30499264

ABSTRACT

Pulsed dye laser irradiation in the wavelength range of 585 to 600 nm is currently the gold standard for treatment of port-wine stains (PWSs). However, this treatment method is often ineffective for deeply seated blood vessels and in individuals with moderate to heavy pigmentation. Use of optical particles doped with the FDA-approved near-infrared (NIR) absorber, indocyanine green (ICG), can potentially provide an effective method to overcome these limitations. Herein, we theoretically investigate the effectiveness of particles derived from erythrocytes, which contain ICG, in mediating photothermal destruction of PWS blood vessels. We refer to these particles as NIR erythrocyte-derived transducers (NETs). Our theoretical model consists of a Monte Carlo algorithm to estimate the volumetric energy deposition, a finite elements approach to solve the heat diffusion equation, and a damage integral based on an Arrhenius relationship to quantify tissue damage. The model geometries include simulated PWS blood vessels as well as actual human PWS blood vessels plexus obtained by the optical coherence tomography. Our simulation results indicate that blood vessels containing micron- or nano-sized NETs and irradiated at 755 nm have higher levels of photothermal damage as compared to blood vessels without NETs irradiated at 585 nm. Blood vessels containing micron-sized NETs also showed higher photothermal damage than blood vessels containing nano-sized NETs. The theoretical model presented can be used in guiding the fabrication of NETs with patient-specific optical properties to allow for personalized treatment based on the depth and size of blood vessels as well as the pigmentation of the individual's skin.


Subject(s)
Erythrocytes/metabolism , Indocyanine Green/pharmacology , Laser Therapy/methods , Port-Wine Stain/diagnostic imaging , Port-Wine Stain/therapy , Skin/radiation effects , Algorithms , Blood Vessels/diagnostic imaging , Blood Vessels/pathology , Computer Simulation , Hot Temperature , Humans , Imaging, Three-Dimensional , Lasers , Models, Anatomic , Models, Theoretical , Monte Carlo Method , Optics and Photonics , Photochemistry , Pigmentation , Spectroscopy, Near-Infrared
15.
Appl Opt ; 57(18): D117-D122, 2018 Jun 20.
Article in English | MEDLINE | ID: mdl-30117930

ABSTRACT

We are combining two optical techniques, pulsed photothermal radiometry (PPTR) and diffuse reflectance spectroscopy (DRS), for noninvasive assessment of the structure and composition of human skin in vivo. The analysis involves simultaneous multidimensional fitting of the measured PPTR signals and DRS spectra with predictions of a numerical model of light transport (Monte Carlo) in a four-layer model optical model of human skin, accounting for the epidermis, papillary and reticular dermis, and subcutis. The assessed epidermal thickness values were tested by coregistration with a multiphoton microscope, which provides vertical sectioning capability based on two-photon excited fluorescence and second-harmonic generation in selected skin components. The comparison shows that these values correspond well to the maximal epidermal thicknesses measured in the multiphoton microscopy images, the rete ridges.


Subject(s)
Light , Microscopy, Fluorescence, Multiphoton/methods , Radiometry/methods , Skin/anatomy & histology , Spectrum Analysis , Temperature , Humans , Male , Middle Aged , Signal Processing, Computer-Assisted
16.
Dalton Trans ; 46(21): 6975-6984, 2017 May 30.
Article in English | MEDLINE | ID: mdl-28513723

ABSTRACT

Upconverting nanoparticles (UCNPs) of ß-NaYF4, co-doped with Yb3+ and Tm3+ and 21-36 nm large, were synthesized using a modified thermal decomposition method. The as-synthesized UCNPs were coated with oleic acid and dispersed in nonpolar media. Their morphology, size and crystal structure were analysed with transmission electron microscopy and X-ray diffraction. The UCNPs showed a fluorescence emission spectrum characteristic of Tm3+. Their dissolution in water (pH ∼ 4-5) and phosphate buffered saline (PBS, pH = 7.4) was determined from the fraction of dissolved fluoride ions using a fluoride-ion-selective electrode. The dissolution of bare UCNPs was much more prominent in PBS than in water. Two amphiphilic coatings, poly(maleic anhydride-alt-1-octadecene)-bis(hexamethylene)triamine (PMAO-BHMT) and d-α-tocopheryl polyethylene glycol succinate (TPGS) were tested for their effects on the dissolution of the UCNPs. The coatings were formed directly on the as-synthesized UCNPs as was confirmed with electrokinetic measurements, infrared spectroscopy and thermogravimetric analyses. Both coatings enabled the dispersion of UCNPs in water, and improved the fluorescence emission intensity with respect to the bare UCNPs. However, only the PMAO-BHMT coating provided an effective protection against the dissolution of the UCNPs and long-term colloidal stability in PBS, and did not show cytotoxicity in EAhy926 endothelial cells.

17.
Nanotechnology ; 28(3): 035101, 2017 Jan 20.
Article in English | MEDLINE | ID: mdl-27966473

ABSTRACT

Light-activated theranostic materials offer a potential platform for optical imaging and phototherapeutic applications. We have engineered constructs derived from erythrocytes, which can be doped with the FDA-approved near infrared (NIR) chromophore, indocyanine green (ICG). We refer to these constructs as NIR erythrocyte-mimicking transducers (NETs). Herein, we investigated the effects of changing the NETs mean diameter from micron- (≈4 µm) to nano- (≈90 nm) scale, and the ICG concentration utilized in the fabrication of NETs from 5 to 20 µM on the resulting absorption and scattering characteristics of the NETs. Our approach consisted of integrating sphere-based measurements of light transmittance and reflectance, and subsequent utilization of these measurements in an inverse adding-doubling algorithm to estimate the absorption (µ a) and reduced scattering (µ s') coefficients of these NETs. For a given NETs diameter, values of µ a increased over the approximate spectral band of 630-860 nm with increasing ICG concentration. Micron-sized NETs produced the highest peak value of µ a when using ICG concentrations of 10 and 20 µM, and showed increased values of µ s' as compared to nano-sized NETs. Spectral profiles of µ s' for these NETs showed a trend consistent with Mie scattering behavior for spherical objects. For all NETs investigated, changing the ICG concentration minimally affected the scattering characteristics. A Monte Carlo-based model of light distribution showed that the presence of these NETs enhanced the fluence levels within simulated blood vessels. These results provide important data towards determining the appropriate light dosimetry parameters for an intended light-based biomedical application of NETs.


Subject(s)
Biomimetic Materials/chemistry , Erythrocytes/chemistry , Molecular Probes/chemistry , Optical Imaging/methods , Optics and Photonics/methods , Animals , Cattle , Indocyanine Green/chemistry , Light , Monte Carlo Method , Optical Imaging/instrumentation , Optics and Photonics/instrumentation , Scattering, Radiation , Spectroscopy, Near-Infrared/instrumentation , Spectroscopy, Near-Infrared/methods , Theranostic Nanomedicine/methods , Transducers
18.
Langmuir ; 32(32): 8222-9, 2016 08 16.
Article in English | MEDLINE | ID: mdl-27459496

ABSTRACT

The dissolution of upconverting AYF4:Yb,Tm (A = Na or K) nanoparticles (UCNPs) in aqueous media was systematically studied. UCNPs with a cubic structure and sizes of between 10 and 33 nm were synthesized solvothermally in ethylene glycol at 200 °C. The UCNPs of both compositions showed an upconversion fluorescence emission characteristic of Tm(3+). The effects of the A cation, the particle size, the temperature, the pH, and the composition of the aqueous medium on the dissolution of the UCNPs were evaluated. The degree of dissolution was determined from the fraction of dissolved fluoride (F(-)) using potentiometry. Unexpectedly, the composition of aqueous media had the most significant effect on the dissolution of the UCNPs. The highest degree of dissolution and rate were measured for the phosphate-buffered saline (PBS), which can be explained by the formation of stable lanthanide compounds with phosphates. The degree of dissolution was much lower in water and in the phthalate buffer, which was attributed to the release of F(-) as a result of the hydrolysis of the UCNPs' surfaces.

19.
Acta Chim Slov ; 62(4): 789-95, 2015.
Article in English | MEDLINE | ID: mdl-26680706

ABSTRACT

Fluorescent nanoparticles, especially fluorides, have received a great deal of interest due to their optical properties, making them suitable for applications in bio-imaging. For this reason they need to exhibit a superior chemical stability in aqueous media. We have studied the influence of the synthesis parameters on the chemical stability of NaYF(4) nanoparticles co-doped with Yb(3+) and Tm(3+). These nanoparticles have different crystal structures, and were synthesized hydrothermally or with thermal decomposition. The samples were characterized with X-ray diffraction and transmission electron microscopy. The up-conversion fluorescence of nanoparticles dispersed in water was measured at 400-900 nm. The partial dissolution of the fluorine in water was detected with an ion-selective electrode for all the samples. The dissolution of the other constituent ions was analysed with an optical emission spectrometer using inductively coupled plasma. The nanoparticles with a hexagonal crystal structure and sizes of around 20 nm that were synthesized with thermal decomposition showed a superior chemical stability in water together with a superior up-conversion fluorescence yield.

20.
J Biomed Opt ; 20(1): 017001, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25554972

ABSTRACT

Pulsed photothermal radiometry (PPTR) allows noninvasive determination of laser-induced temperature depth profiles in optically scattering layered structures. The obtained profiles provide information on spatial distribution of selected chromophores such as melanin and hemoglobin in human skin. We apply the described approach to study time evolution of incidental bruises (hematomas) in human subjects. By combining numerical simulations of laser energy deposition in bruised skin with objective fitting of the predicted and measured PPTR signals, we can quantitatively characterize the key processes involved in bruise evolution (i.e., hemoglobin mass diffusion and biochemical decomposition). Simultaneous analysis of PPTR signals obtained at various times post injury provides an insight into the variations of these parameters during the bruise healing process. The presented methodology and results advance our understanding of the bruise evolution and represent an important step toward development of an objective technique for age determination of traumatic bruises in forensic medicine.


Subject(s)
Contusions/pathology , Lasers , Radiometry/methods , Adult , Hemoglobins/analysis , Hemoglobins/chemistry , Humans , Middle Aged , Monte Carlo Method , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...