Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmacopsychiatry ; 39(1): 1-8, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16453246

ABSTRACT

INTRODUCTION: We wanted to elucidate whether the proposed advantages of citalopram-buspirone combination treatment are related to changes in 5-HT(2A/C) receptor-mediated neurotransmission. METHODS: The affinity of buspirone to 5-HT2A and 5-HT2C receptors was measured in vitro, and the influence of buspirone on 5-HT2C receptor-mediated phosphoinositide hydrolysis was estimated. Four groups of rats received citalopram (10 mg/kg), buspirone (6 mg/kg), citalopram-buspirone combination, or saline once a day s.c. for 14 days. Treatment effects on 5-HT2A and 5-HT2C receptors were investigated by receptor autoradiography with antagonist and agonist radioligands. RESULTS: Buspirone was found to be a weak 5-HT2C receptor antagonist, with a low affinity for 5-HT2A and 5-HT2C receptors. Repeated buspirone-citalopram combination treatment markedly decreased [3H]ketanserin and [125I]DOI binding to 5-HT2A receptors. Repeated administration of buspirone and buspirone-citalopram combination increased the affinity of [3H]mesulergine toward 5-HT2C receptors, and buspirone-citalopram combination also decreased [125I]DOI binding to 5-HT2C receptors. DISCUSSION: We suggest that downregulation of brain 5-HT2A receptors and possibly of 5-HT2C receptor agonist sites is involved in the beneficial clinical effects of buspirone-SSRI augmentation treatment. Furthermore, a conversion of brain 5-HT2C receptors from high- to low-affinity state may provide an additional mechanism for the anti-anxiety effects of buspirone.


Subject(s)
Anti-Anxiety Agents/pharmacology , Antidepressive Agents/pharmacology , Brain Chemistry/drug effects , Buspirone/pharmacology , Citalopram/pharmacology , Receptor, Serotonin, 5-HT2A/drug effects , Receptor, Serotonin, 5-HT2C/drug effects , Amphetamines/pharmacology , Animals , Autoradiography , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Choroid Plexus/drug effects , Choroid Plexus/metabolism , Ergolines/pharmacology , Hydrolysis , Image Processing, Computer-Assisted , Ketanserin/pharmacology , Male , Phosphatidylinositols/metabolism , Rats , Rats, Sprague-Dawley , Serotonin Antagonists/pharmacology
2.
Psychopharmacology (Berl) ; 157(2): 180-7, 2001 Sep.
Article in English | MEDLINE | ID: mdl-11594443

ABSTRACT

RATIONALE: Sertindole is a novel antipsychotic drug with high affinity for dopamine D2, alpha-1-adrenoceptors and serotonin 5-HT2A and 5-HT2c receptors. The 5-HT2c receptor component of sertindole may be clinically relevant as this receptor subtype is implicated in regulation of anxiety, cognition/memory and brain plasticity. OBJECTIVE: To characterise the interaction of sertindole with the 5-HT2C receptor using rat choroid plexus as a physiological receptor source. RESULTS: Sertindole had nanomolar affinity for the 5-HT2c receptor in vitro. Sertindole antagonised 5-HT-stimulated phosphoinositide (PI) hydrolysis and, like clozapine, also inhibited basal PI hydrolysis suggesting that sertindole is a 5-HT2C receptor inverse agonist. The effect of repeated sertindole dosing on 5-HT2C receptors was studied in rats treated for 21 days with sertindole (20, 300 and 1250 microg/kg/day). Clozapine (25 mg/kg/day) was used as a comparison drug. 5-HT2C receptor binding in the choroid plexus was measured with antagonist and agonist ligands ([3H]mesulergine and [125I]DOI) using quantitative autoradiography 8 days after withdrawal. Clozapine decreased 5-HT2C receptor antagonist and agonist binding sites equally by 36% and 32%, respectively. Sertindole did not induce significant changes in the total number of 5-HT2C receptors, but the highest dose of sertindole lowered the affinity of [3H]mesulergine for 5-HT2C receptors. This was most likely due to residual sertindole levels in the brain which was supported by direct concentration measurements. In contrast, sertindole induced a highly significant and dose-related decrease in 5-HT2C agonist binding (up to 77%). Neither drug affected striatal D2 receptor binding. CONCLUSIONS: Sertindole, like clozapine, was found to be a serotonin 5-HT2C receptor inverse agonist. The preferential downregulation of 5-HT2C receptor agonist (G-protein-coupled) sites by chronic administration seemed to differentiate sertindole from clozapine at these dose regimens. The 5-HT2c receptor downregulation during repeated dosing may contribute to therapeutic efficacy and/or side effects of sertindole treatment.


Subject(s)
Antipsychotic Agents/pharmacology , Imidazoles/pharmacology , Indoles/pharmacology , Receptors, Serotonin/metabolism , Serotonin Antagonists/metabolism , Serotonin Receptor Agonists/pharmacology , Animals , Binding Sites/drug effects , Brain/drug effects , Brain/metabolism , Dose-Response Relationship, Drug , Down-Regulation/drug effects , Down-Regulation/physiology , Male , Rats , Rats, Sprague-Dawley , Receptor, Serotonin, 5-HT2C , Serotonin Receptor Agonists/metabolism
3.
Psychopharmacology (Berl) ; 136(2): 99-104, 1998 Mar.
Article in English | MEDLINE | ID: mdl-9551765

ABSTRACT

Deramciclane (EGIS-3886) is a novel anxiolytic agent that binds with high affinity to 5-HT2A/2C receptors. The interactions of deramciclane with the serotonin 5-HT2C receptor were characterized further using receptor phosphoinositide hydrolysis assays and receptor autoradiography. Deramciclane antagonized 5-HT2C receptor mediated 5-HT-stimulated phosphoinositide hydrolysis with an IC50 value of 168 nM. Deramciclane also decreased basal phosphoinositide hydrolysis by up to 33% (EC50 = 93 nM) in a physiological system in the choroid plexus, suggesting that deramciclane possesses inverse agonist properties at this receptor. Administration of single doses of 0.5 mg/kg and 10 mg/kg resulted in a maximal 5-HT2C receptor occupancy of up to 45% and 79%, respectively, in the choroid plexus. Chronic (14 days) treatment with 0.5 mg/kg or 10 mg/kg deramciclane did not alter [125I]DOI (agonist) or [3H]mesulergine (antagonist) binding to 5-HT2C receptors in the choroid plexus compared to saline-treated controls, as determined by quantitative receptor autoradiography. In comparison, the effects of deramciclane on 5-HT2A binding characteristics and receptor occupancy were also studied. Deramciclane treatment resulted in 5-HT2A receptor occupancy of up to 78%, but no significant effect of chronic treatment on 5-HT2A receptor agonist binding levels was found. In conclusion, these data indicate that deramciclane is a 5-HT2C receptor inverse agonist and occupies 5-HT2C receptors during treatment, and that chronic treatment with deramciclane does not lead to 5-HT2C receptor down-regulation.


Subject(s)
Anti-Anxiety Agents/pharmacology , Brain/drug effects , Camphanes/pharmacology , Receptors, Serotonin/drug effects , Serotonin Antagonists/pharmacology , Animals , Brain/metabolism , Clozapine/pharmacology , Inositol Phosphates/metabolism , Male , Rats , Rats, Sprague-Dawley , Receptor, Serotonin, 5-HT2A , Receptor, Serotonin, 5-HT2C , Receptors, Serotonin/metabolism
4.
Psychopharmacology (Berl) ; 126(3): 234-40, 1996 Aug.
Article in English | MEDLINE | ID: mdl-8876023

ABSTRACT

Interactions of the selective serotonin reuptake inhibitors (SSRIs) citalopram, fluoxetine and its main metabolite norfluoxetine, and the tricyclic antidepressant (TCA) imipramine with the rat serotonin 5-HT2C receptor in a clonal cell line and in the rat choroid plexus were investigated by radioligand binding and phosphoinositide (PI) hydrolysis assays. For comparison, the affinities of a variety of other antidepressants of different chemical classes for the cloned rat 5-HT2C and 5-HT2A receptors were also determined by radioligand binding assays. Fluoxetine displayed relatively high affinity for the 5-HT2C receptor in the choroid plexus, with a Ki value for inhibition of [3H]mesulergine binding of 55.4 nM. The Ki values for imipramine, norfluoxetine and citalopram were 136 nM, 203 nM, and 298 nM, respectively. Similar rank order of potency was detected in PI hydrolysis assays, which showed that these drugs are antagonists at the 5-HT2C receptor without exhibiting inverse agonist activity. [3H]Ketanserin (5-HT2A) binding assays revealed that the SSRIs fluoxetine, norfluoxetine and citalopram show 10- to 23-fold selectivity for the 5-HT2C receptor in vitro, whereas the TCA imipramine does not. Many other TCAs also had high to intermediate affinity for both 5-HT2A and 5-HT2C receptors. The present data provide evidence that fluoxetine, norfluoxetine and citalopram, along with many other antidepressant compounds, interact directly with the 5-HT2C receptor.


Subject(s)
Citalopram/pharmacology , Fluoxetine/analogs & derivatives , Fluoxetine/pharmacology , Receptors, Serotonin/drug effects , Selective Serotonin Reuptake Inhibitors/pharmacology , Animals , Antidepressive Agents, Tricyclic/pharmacology , Choroid Plexus/metabolism , Imipramine/pharmacology , Male , Phosphatidylinositols/metabolism , Rats , Rats, Sprague-Dawley , Receptor, Serotonin, 5-HT2C
SELECTION OF CITATIONS
SEARCH DETAIL
...