Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 2441: 157-170, 2022.
Article in English | MEDLINE | ID: mdl-35099735

ABSTRACT

Stromal vascular fraction (SVF), isolated from adipose tissue, identifies as a rich cell source comprised of endothelial cells, endothelial progenitor cells, pericytes, smooth muscle cells, fibroblasts, and immune cells. SVF represents a promising therapeutic heterogonous cell source for growing new blood microvessels due to its rich niche of cells. However, the spatiotemporal dynamics of SVF within living tissues remain largely unknown. The objective of this chapter is to describe a protocol for culturing SVF on mouse mesentery tissues in order to aid in the discovery of SVF dynamics and associated vessel growth over time. SVF was isolated from the inguinal adipose from adult mice and seeded onto mesentery tissues. Tissues were then cultured for up to 5 days and labeled with endothelial cell and pericyte markers. Representative results demonstrate the observation of SVF-derived vasculogenesis characterized by de novo vessel formation and subsequent vessel connection.


Subject(s)
Endothelial Cells , Stromal Cells , Adipose Tissue , Animals , Cells, Cultured , Mesentery , Mice , Stromal Vascular Fraction
2.
Tissue Eng Part A ; 27(7-8): 438-453, 2021 04.
Article in English | MEDLINE | ID: mdl-33059528

ABSTRACT

A challenge in cancer research is the lack of physiologically responsive in vitro models that enable tracking of cancer cells in tissue-like environments. A model that enables real-time investigation of cancer cell migration, fate, and function during angiogenesis does not exist. Current models, such as 2D or 3D in vitro culturing, can contain multiple cell types, but they do not incorporate the complexity of intact microvascular networks. The objective of this study was to establish a tumor microvasculature model by demonstrating the feasibility of bioprinting cancer cells onto excised mouse tissue. Inkjet-printed DiI+ breast cancer cells on mesometrium tissues from C57Bl/6 mice demonstrated cancer cells' motility and proliferation through time-lapse imaging. Colocalization of DAPI+ nuclei confirmed that DiI+ cancer cells remained intact postprinting. Printed DiI+ 4T1 cells also remained viable after printing on Day 0 and after culture on Day 5. Time-lapse imaging over 5 days enabled tracking of cell migration and proliferation. The number of cells and cell area were significantly increased over time. After culture, cancer cell clusters were colocalized with angiogenic microvessels. The number of vascular islands, defined as disconnected endothelial cell segments, was increased for tissues with bioprinted cancer cells, which suggests that the early stages of angiogenesis were influenced by the presence of cancer cells. Bioprinting cathepsin L knockdown 4T1 cancer cells on wild-type tissues or nontarget 4T1 cells on NG2 knockout tissues served to validate the use of the model for probing tumor cell versus microenvironment changes. These results establish the potential for bioprinting cancer cells onto live mouse tissues to investigate cancer microvascular dynamics within a physiologically relevant microenvironment. Impact statement To keep advancing the cancer biology field, tissue engineering has been focusing on developing in vitro tumor biomimetic models that more closely resemble the native microenvironment. We introduce a novel methodology of bioprinting exogenous cancer cells onto mouse tissue that contains multiple cells and systems within native physiology to investigate cancer cell migration and interactions with nearby microvascular networks. This study corroborates the manipulation of different exogenous cells and host microenvironments that impact cancer cell dynamics in a physiologically relevant tissue. Overall, it is a new approach for delineating the effects of the microenvironment on cancer cells and vice versa.


Subject(s)
Bioprinting , Neoplasms , Animals , Mice , Microvessels , Neovascularization, Pathologic , Printing, Three-Dimensional , Tissue Engineering
3.
Microcirculation ; 27(2): e12595, 2020 02.
Article in English | MEDLINE | ID: mdl-31584728

ABSTRACT

OBJECTIVE: Emerging areas of vascular biology focus on lymphatic/blood vessel mispatterning and the regulation of endothelial cell identity. However, a fundamental question remains unanswered: Can lymphatic vessels become blood vessels in adult tissues? Leveraging a novel tissue culture model, the objective of this study was to track lymphatic endothelial cell fate over the time course of adult microvascular network remodeling. METHODS: Cultured adult Wistar rat mesenteric tissues were labeled with BSI-lectin and time-lapse images were captured over five days of serum-stimulated remodeling. Additionally, rat mesenteric tissues on day 0 and day 3 and 5 post-culture were labeled for PECAM + LYVE-1 or PECAM + podoplanin. RESULTS: Cultured networks were characterized by increases in blood capillary sprouting, lymphatic sprouting, and the number of lymphatic/blood vessel connections. Comparison of images from the same network regions identified incorporation of lymphatic vessels into blood vessels. Mosaic lymphatic/blood vessels contained lymphatic marker positive and negative endothelial cells. CONCLUSIONS: Our results reveal the ability for lymphatic vessels to transition into blood vessels in adult microvascular networks and discover a new paradigm for investigating lymphatic/blood endothelial cell dynamics during microvascular remodeling.


Subject(s)
Capillaries/diagnostic imaging , Endothelial Cells/cytology , Lymphatic Vessels/diagnostic imaging , Models, Cardiovascular , Vascular Remodeling , Animals , Capillaries/metabolism , Endothelial Cells/metabolism , Lymphatic Vessels/metabolism , Male , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...