Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 7029, 2024 03 25.
Article in English | MEDLINE | ID: mdl-38528237

ABSTRACT

Proximal femoral fractures are a serious life-threatening injury with high morbidity and mortality. Magnetic resonance (MR) imaging has potential to non-invasively assess proximal femoral bone strength in vivo through usage of finite element (FE) modelling (a technique referred to as MR-FE). To precisely assess bone strength, knowledge of measurement error associated with different MR-FE outcomes is needed. The objective of this study was to characterize the short-term in vivo precision errors of MR-FE outcomes (e.g., stress, strain, failure loads) of the proximal femur for fall and stance loading configurations using 13 participants (5 males and 8 females; median age: 27 years, range: 21-68), each scanned 3 times. MR-FE models were generated, and mean von Mises stress and strain as well as principal stress and strain were calculated for 3 regions of interest. Similarly, we calculated the failure loads to cause 5% of contiguous elements to fail according to the von Mises yield, Brittle Coulomb-Mohr, normal principal, and Hoffman stress and strain criteria. Precision (root-mean squared coefficient of variation) of the MR-FE outcomes ranged from 3.3% to 11.8% for stress and strain-based mechanical outcomes, and 5.8% to 9.0% for failure loads. These results provide evidence that MR-FE outcomes are a promising non-invasive technique for monitoring femoral strength in vivo.


Subject(s)
Femur , Lower Extremity , Male , Female , Humans , Adult , Finite Element Analysis , Femur/diagnostic imaging , Accidental Falls , Magnetic Resonance Imaging
2.
Anat Rec (Hoboken) ; 307(3): 611-632, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37702738

ABSTRACT

Industrialization influenced several facets of lifestyle, including softer nutrient-poor diets that contributed to vitamin D deficiency in post-industrzialized populations, with concomitantly increased dental problems. Here we simulated a post-industrialized diet in a mouse model to test the effects of diet texture and vitamin D level on mandible and third molar (M3) forms. Mice were raised on a soft diet with vitamin D (VitD) or without it (NoD), or on a hard diet with vitamin D. We hypothesized that a VitD/hard diet is optimal for normal mandible and tooth root form, as well as for timely M3 initiation. Subsets of adult NoD/soft and VitD/soft groups were bred to produce embryos that were micro-computed tomography (µCT) scanned to stage M3 development. M3 stage did not differ between embryos from mothers fed VitD and NoD diets, indicating that vitamin D does not affect timing of M3 onset. Sacrificed adult mice were µCT-scanned, their mandibles 3D-landmarked and M3 roots were measured. Principal component (PC) analysis described the largest proportion of mandible shape variance (PC1, 30.1%) related to diet texture, and nominal shape variance (PC2, 13.8%) related to vitamin D. Mice fed a soft diet had shorter, relatively narrower, and somewhat differently shaped mandibles that recapitulated findings in human populations. ANOVA and other multivariate tests found significantly wider M3 roots and larger root canals in mice fed a soft diet, with vitamin D having little effect. Altogether our experiments using a mouse model contribute new insights about how a post-industrial diet may influence human craniodental variation.


Subject(s)
Vitamin D Deficiency , Vitamin D , Humans , X-Ray Microtomography , Mandible/diagnostic imaging , Tooth Root/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...