Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 18055, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37872235

ABSTRACT

Design of metallosupramolecular materials encompassing more than one kind of supramolecular interaction can become deceptive, but it is necessary to better understand the concept of the controlled formation of supramolecular systems. Herein, we show the structural diversity of the bis-compartmental phenoxo-benzimidazole ligand H3L1 upon self-assembly with variety of d-block metal ions, accounting for factors such as: counterions, pH, solvent and reaction conditions. Solid-state and solution studies show that the parent ligand can accommodate different forms, related to (de)protonation and proton-transfer, resulting in the formation of mono-, bi- or tetrametallic architectures, which was also confirmed with control studies on the new mono-compartmental phenoxo-benzimidazole H2L2 ligand analogue. For the chosen architectures, structural variables such as porous character, magnetic behaviour or luminescence studies were studied to demonstrate how the form of H3L1 ligand affects the final form of the supramolecular architecture and observed properties. Such complex structural variations within the benzimidazole-phenoxo-type ligand have been demonstrated for the first time and this proof-of-concept can be used to integrate these principles in more sophisticated architectures in the future, combining both the benzimidazole and phenoxide subunits. Ultimately, those principles could be utilized for targeted manipulation of properties through molecular tectonics and crystal engineering aspects.

2.
Chemistry ; 29(53): e202300695, 2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37408381

ABSTRACT

The triphenylmethane (trityl) group has been recognized as a supramolecular synthon in crystal engineering, molecular machine rotors and stereochemical chirality inductors in materials science. Herein we demonstrate for the first time how it can be utilized in the domain of molecular magnetic materials through shaping of single molecule magnet (SMM) properties within the lanthanide complexes in tandem with other non-covalent interactions. Trityl-appended mono- (HL1 ) and bis-compartmental (HL2 ) hydrazone ligands were synthesized and complexated with Dy(III) and Er(III) triflate and nitrate salts to generate four monometallic (1-4) and two bimetallic (5, 6) complexes. The static and dynamic magnetic properties of 1-6 were investigated, revealing that only ligand HL1 induces assemblies (1-4) capable of showing SMM behaviour, with Dy(III) congeners (1, 2) able to exhibit the phenomenon also under zero field conditions. Theoretical ab initio studies helped in determination of Dy(III) energetic levels, magnetic anisotropic axes and corroborated magnetic relaxation mechanisms to be a combination of Raman and quantum tunnelling in zero dc field, the latter being cancelled in the optimum non-zero dc field. Our work represents the first study of magneto-structural correlations within the trityl Ln-SMMs, leading to generation of slowly relaxing zero-field dysprosium complexes within the hydrogen-bonded assemblies.

3.
Int J Mol Sci ; 22(9)2021 May 05.
Article in English | MEDLINE | ID: mdl-34063119

ABSTRACT

One of the promising strategies for improvement of cancer treatment is application of a combination therapy. The aim of this study was to investigate the anticancer activity of nanoformulations containing doxorubicin and iron oxide particles covered with polymeric shells bearing cholesterol moieties. It was postulated that due to high affinity to cell membranes, particles comprising poly(cholesteryl acrylate) can sensitize cancer cells to doxorubicin chemotherapy. The performed analyses revealed that the developed systems are effective against the human breast cancer cell lines MCF-7 and MDA-MB-231 even at low doses of the active compound applied (0.5 µM). Additionally, high compatibility and lack of toxicity of the tested materials against human red blood cells, immune (monocytic THP-1) cells, and cardiomyocyte H9C2(2-1) cells was demonstrated. Synergistic effects observed upon administration of doxorubicin with polymer-iron oxide hybrids comprising poly(cholesteryl acrylate) may provide an opportunity to limit toxicity of the drug and to improve its therapeutic efficiency at the same time.


Subject(s)
Breast Neoplasms/drug therapy , Cholesterol/chemistry , Doxorubicin/therapeutic use , Magnetic Phenomena , Polymers/chemistry , Animals , Breast Neoplasms/pathology , Cell Line, Tumor , Dose-Response Relationship, Drug , Doxorubicin/pharmacology , Doxorubicin/toxicity , Dynamic Light Scattering , Female , Humans , Materials Testing , Rats , Spectroscopy, Fourier Transform Infrared , Static Electricity , Thermogravimetry
4.
Dalton Trans ; 49(46): 16707-16714, 2020 Dec 08.
Article in English | MEDLINE | ID: mdl-33169760

ABSTRACT

Reaction of Co(NCS)2 and Ni(NCS)2 with 4-tert-butylpyridine in ethyl acetate leads to the formation of mixed crystals of a layered compound with the composition [CoxNi1-x(NCS)2(4-tert-butylpyridine]n. The mixed crystal formation was investigated by a combination of atomic absorption spectroscopy, X-ray powder diffraction and IR spectroscopy. Magnetic and specific heat measurements prove dominating ferromagnetic exchange interactions within the layers and a ferromagnetic transition. Depending on the synthetic method, inhomogeneous samples were obtained, for which predominantly the large difference in the solubility of the homometallic compounds might be responsible. Very long reaction time leads to much better samples for which a distinct critical temperature is observed that increases smoothly with increasing Ni content.

5.
Dalton Trans ; 49(20): 6807-6815, 2020 May 28.
Article in English | MEDLINE | ID: mdl-32374334

ABSTRACT

Single ion magnets have long been considered good prospective candidates to record a bit of information. One of the smallest known single ion magnets is CoBr2(pyridine)2. This molecular compound exhibits slow relaxation of magnetization mainly due to the thermally activated Orbach process, [A. M. Majcher et al., Chem. Sci., 2018, 9, 7277-7286]. However, the total relaxation time is dramatically shortened at low temperatures due to the direct, Raman, and quantum tunneling of magnetization processes. At low temperatures, the distribution of the probability of the possible relaxation pathways in this case favours QTM and the direct process over the Orbach process. To prolong the relaxation time, the compound was diluted with diamagnetic ZnII, producing 5 analogues of the general formula: CoxZn1-xBr2(pyridine)2 (x = 0.91, 0.67, 0.43, 0.24, and 0.06), confirmed to be a solid solution by independent experimental techniques (powder X-ray diffraction, infrared spectroscopy). The presence of diamagnetic ZnII ions changes the distribution of the dipolar interactions between the CoII centres in the material, which results in a monotonous change in the relaxation times, which in turn become longer with increasing dilutions, which is explained by the diminishing QTM contribution. The appearance of multiple relaxation processes is also observed for higher x, which is explained as the creation of multiple, separate frequency domains, as a result of the competition between QTM and the direct process contributions. We present a thorough, systematic study of magnetic dilution, which will hopefully be useful to estimate optimal dilutions in similar solid solutions.

SELECTION OF CITATIONS
SEARCH DETAIL
...