Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Macromol Biosci ; 18(4): e1700396, 2018 04.
Article in English | MEDLINE | ID: mdl-29488693

ABSTRACT

This paper presents the synthesis and characterization of d-fructose modified poly(ethylene glycol) (Fru-PEG) and fructose modified poly(ethylene glycol)-block-poly(ethyl hexyl glycidyl ether) (Fru-PEG-b-PEHG) that are both prepared by initiation with isopropyliden protected fructose, followed by deprotection of the sugar. The block copolymers are self-assembled into micelles, and are subsequently characterized by cryo-TEM and dynamic light scattering. The fluorescent dye Nile red is encapsulated as a model hydrophobic compound and fluorescent marker to perform initial uptake tests with breast cancer cells. The uptake of sugar and nonsugar decorated micelles is compared.


Subject(s)
Drug Delivery Systems , Micelles , Polyethylene Glycols/chemical synthesis , Polymers/chemical synthesis , Drug Carriers , Fructose/chemistry , Humans , Hydrophobic and Hydrophilic Interactions , Polyethylene Glycols/chemistry , Polymers/chemistry
2.
Polymers (Basel) ; 10(12)2018 Dec 16.
Article in English | MEDLINE | ID: mdl-30961320

ABSTRACT

The determination of diol impurities in methoxy poly(ethylene glycol)s (mPEG)s is of high importance, e.g., in the area of pharmaceutical applications, since mPEGs are considered the gold standard-based on properties of biocompatibility, stealth effect against the immune system, and well-established procedures used in PEGylation reactions. Herein, we communicate a straightforward and fast approach for the resolution of the PEGdiol impurities in mPEG products by liquid chromatography on reversed-phase monolithic silica-rods. Thus, we utilize fine, in-house prepared and narrow dispersity mPEGs (Ð ≤ 1.1) and commercial PEGdiol standards as a reference. Most efficient analysis of diol impurities becomes possible with reversed-phase liquid chromatography that results in selective elution of the PEGdiol from mPEG macromolecule populations in partition/adsorption mode. We do this by a minimum selectivity of the population of macromolecules characterizing the narrow molar mass distributions of mPEG. Control experiments with intentionally added water at the start of the well-controlled mPEG synthesis via the living anionic ring opening polymerization of ethylene oxide clearly reconciled the existence of PEGdiol impurity in chromatographed samples. The here-demonstrated methodology allows for the resolution of diol impurities of less than one percent in elution times of only a few minutes, confirmed by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) of the collected elution fractions. The unique combination of the open flow-through pore structure of the monolithic silica rods and resultant varying accessibility of C18-derivatized pore surfaces indicates beneficial properties for robust and end-group-specific adsorption/partition liquid chromatography of synthetic macromolecules.

3.
ACS Biomater Sci Eng ; 3(3): 304-312, 2017 Mar 13.
Article in English | MEDLINE | ID: mdl-33465929

ABSTRACT

Polymer conjugated biologics form a multibillion dollar market, dominated by poly(ethylene glycol) (PEG). Recent reports linked PEGs to immunological concerns, fueling the need for alternative polymers. Therefore, we are presenting a strategy replacing PEG by poly(2-oxazoline) (POx) polymers using genetically engineered interleukin-4 (IL-4) featuring an unnatural amino acid for site-specific conjugation through bioorthogonal copper-catalyzed azide alkyne cycloaddition (CuAAC). Conjugation yields of IL-4-PEG were poor and did not respond to an increase in the copper catalyst. In contrast, POxylated IL-4 conjugates resulted in homogeneous conjugate outcome, as demonstrated electrophoretically by size exclusion chromatography and analytical ultracentrifugation. Furthermore, POxylation did not impair thermal and chemical stability, and preserved wild-type IL-4 activity for the conjugates as demonstrated by TF-1 cell proliferation and STAT-6 phosphorylation in HEK293T cells, respectively. In conclusion, POxylation provides an interesting alternative to PEGylation with superior outcome for the synthesis yield by CuAAC and resulting in conjugates with excellent thermal and chemical stress profiles as well as biological performances.

4.
Int J Pharm ; 500(1-2): 187-95, 2016 Mar 16.
Article in English | MEDLINE | ID: mdl-26784983

ABSTRACT

The effect of modifying the well-established pharmaceutical polymer PLGA by different PEG-containing block-copolymers on the preparation of ovalbumin (OVA) loaded PLGA nanoparticles (NPs) was studied. The used polymers contained poly(d,l-lactic-co-glycolic acid) (PLGA), polyethylene glycol (PEG) and poly(allyl glycidyl ether) (PAGE) as building blocks. The double emulsion technique yielded spherical NPs in the size range from 170 to 220 nm (PDI<0.15) for all the differently modified polymers, allowing to directly compare protein loading of and release. PEGylation is usually believed to increase the hydrophilic character of produced particles, favoring encapsulation of hydrophilic substances. However, in this study simple PEGylation of PLGA had only a slight effect on protein release. In contrast, incorporating a PAGE block between the PEG and PLGA units, also eventually enabling active targeting introducing a reactive group, led to a significantly higher loading (+25%) and release rate (+100%), compared to PLGA and PEG-b-PLGA NPs.


Subject(s)
Epoxy Compounds/chemistry , Lactic Acid/chemistry , Nanoparticles/chemistry , Polyethylene Glycols/chemistry , Polyglycolic Acid/chemistry , Drug Liberation , Ovalbumin/chemistry , Particle Size , Polylactic Acid-Polyglycolic Acid Copolymer , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...