Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Res Pharm Sci ; 19(1): 64-72, 2024 Feb.
Article in English | MEDLINE | ID: mdl-39006974

ABSTRACT

Background and purpose: Sepsis induces brain dysfunction and there is still a requirement for an unemployed viable restorative approach. This study aimed to investigate the role of dasatinib in the modulation of proinflammatory mediators, attenuating neuroinflammatory response, and it's signaling pathway during endotoxemia. Experimental approach: Twenty-four adult male Swiss-albino mice were randomized into four groups: sham (undergo laparotomy without cecal ligation and puncture, sepsis (laparotomy with cecal ligation and puncture), vehicle-dimethyl sulfoxide, dasatinib (20 mg/kg/day) intraperitoneally. Brain tissue used for assessment of interleukin (IL)-6, IL-1ß, tumor necrosis factor-alpha (TNF-α), IL-10, Toll-like receptor 4 (TLR4), protein kinase B (AKT), phosphoinositide 3-kinases (PI3K), signal transducer and activator of transcription 3 (STAT3), and histopathological examination. Findings/Results: Brain tissue levels of TNF-α, IL-6, and IL1 ß were higher in the sepsis group than in the sham and vehicle groups. The dasatinib group had considerably lower tissue levels of these markers and significantly higher tissue values of IL-10 than the sepsis and vehicle groups. The sham group had much lower tissue values of TLR4, AKT, STAT3, and PI3k than in sepsis and vehicle groups. Furthermore, tissue levels of these markers in the dasatinib group were considerably lower than those in the sepsis and vehicle groups. Histopathology demonstrated that dasatinib might considerably reduce brain damage and the intensity of neuroinflammation when compared to sepsis and vehicle groups that showed extensive brain inflammation and damage. Conclusion and implication: Dasatinib attenuated endotoxemia-induced acute brain damage in mice via modulating effects on TLR4, PI3K, AKT, and STAT3 downstream signaling pathways.

2.
Wiad Lek ; 77(3): 497-505, 2024.
Article in English | MEDLINE | ID: mdl-38691792

ABSTRACT

OBJECTIVE: Aim: The aim of this research is to clarify the potential effect of CDDO-EA against experimentally sepsis induced lung injury in mice. PATIENTS AND METHODS: Materials and Methods: Mice have divided into four groups: Sham group CLP group, Vehicle-treatment group, CDDO-EA-treated group: mice in this group received CDDO-EA 2mg/kg intraperitoneally, 1hr before CLP, then the animals were sacrificed 24hr after CLP. After exsAngpuinations, tissue samples of lung were collected, followed by markers measurement including, TNF-α, IL-1ß, VEGF, MPO, caspase11, Angp-1and Angp-2 by ELISA, gene expression of TIE2 and VE-cadherin by qRT-PCR, in addition to histopathological study. RESULTS: Results: A significant elevation (p<0.05) in TNF-α, IL-1ß, MPO, ANGP-2, VEGF, CASPASE 11 in CLP and vehicle groups when compared with sham group. CDDO-EA group showed significantly lower levels p<0.05, level of ANGP-1 was significantly lower p<0.05 in the CLP and vehicle groups as compared with the sham group. Quantitative real-time PCR demonstrated a significant decrement in mRNA expression of TIE2&ve-cadherin genes p<0.05 in sepsis & vehicle. CONCLUSION: Conclusions: CDDO-EA has lung protective effects due to its anti-inflammatory and antiAngpiogenic activity, additionally, CDDO-EA showes a lung protective effect as they affect tissue mRNA expression of TIE2 and cadherin gene. Furthermore, CDDO-EA attenuate the histopathological changes that occur during polymicrobial sepsis thereby lung protection effect.


Subject(s)
Acute Lung Injury , Disease Models, Animal , Endotoxemia , Sepsis , Animals , Mice , Acute Lung Injury/etiology , Acute Lung Injury/metabolism , Acute Lung Injury/pathology , Endotoxemia/metabolism , Sepsis/complications , Sepsis/metabolism , Male , Oleanolic Acid/analogs & derivatives , Oleanolic Acid/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Lung/pathology , Lung/metabolism , Interleukin-1beta/metabolism
3.
J Med Life ; 16(7): 1105-1110, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37900069

ABSTRACT

Sepsis, a life-threatening condition arising from infection, often results in multi-organ failure, including cardiac dysfunction. This study investigated Xanthohumol, a natural compound, and its potential mechanism of action to enhance heart function following sepsis. A total of twenty-four adult male Swiss albino mice were allocated randomly to one of four equal groups (n=6): sham, CLP, vehicle Xanthohumol the same amount of DMSO injected IP 10 minutes before the CLP, and Xanthohumol group (0.4 mg/kg of Xanthohumol administered IP before the CLP process). Toll-like receptor 4, pro-inflammatory mediators, anti-inflammatory markers, oxidative stress indicators, apoptosis markers, and serum cardiac damage biomarkers were measured in the cardiac tissue using ELISA. Data with normal distribution were analyzed using t-test and ANOVA tests (p<0.05). In comparison to the sham group, the sepsis group had significantly higher levels of TLR-4, IL-6, TNF-α, MIF, F2-isoprostane, caspase-3, cTn-I, and CK-MB, while the pre-treated group with Xanthohumol had significantly lower levels (p<0.05) of these markers than the sepsis group. Bcl-2 showed no significant difference in Xanthohumol pre-treated group relative to the sepsis group, while IL-10 was significantly elevated. Xanthohumol dramatically reduced cardiac tissue injury (p<0.05) relative to the CLP group. By blocking the downstream signal transduction pathways of TLR-4 and NF-kB, Xanthohumol was shown to lessen cardiac damage in male mice during CLP-induced polymicrobial sepsis.


Subject(s)
Sepsis , Toll-Like Receptor 4 , Mice , Male , Animals , Toll-Like Receptor 4/metabolism , Signal Transduction , NF-kappa B/metabolism , Sepsis/complications , Sepsis/drug therapy
4.
J Med Life ; 16(7): 1120-1126, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37900081

ABSTRACT

As sepsis is associated with a 50% increase in mortality, sepsis-induced cardiomyopathy has become a critical topic. A multidisciplinary approach is required for the diagnosis and treatment of septic cardiomyopathy. This study looked at Sulforaphane, a natural product that aims to evaluate cardiac function after sepsis, and its likely mechanism of action. Twenty-four adult male Swiss albino mice were randomly divided into 4 equal groups (n=6): sham, CLP, vehicle Sulforaphane (the same amount of DMSO injected IP one hour before the CLP), and Sulforaphane group (one hour before the CLP, a 5mg/kg dose of Sulforaphane was injected). Cardiac tissue levels of toll-like receptor 4 (TLR-4), pro-inflammatory mediators, anti-inflammatory markers, oxidative stress markers, apoptosis markers, and serum cardiac damage biomarkers were assessed using ELISA. Statistical analyses, including t-tests and ANOVA tests, were performed with a significance level of 0.05 for normally distributed data. Compared to the sham group, the sepsis group had significantly elevated levels of TLR-4, IL-6, TNF-α, MIF, F2-isoprostane, caspase-3, cTn-I, and CK-MB (p<0.05). In contrast, the Sulforaphane pre-treated group demonstrated significantly lower levels of these markers (p<0.05). Additionally, Bcl-2 levels were significantly reduced (p<0.05) in the Sulforaphane group. Sulforaphane administration also significantly attenuated cardiac tissue injury (p<0.05). The findings suggest that Sulforaphane can decrease heart damage in male mice during CLP-induced polymicrobial sepsis by suppressing TLR-4/NF-kB downstream signal transduction pathways.


Subject(s)
Cardiomyopathies , Heart Injuries , Sepsis , Mice , Male , Animals , Toll-Like Receptor 4/metabolism , Toll-Like Receptor 4/therapeutic use , Cardiomyopathies/etiology , Cardiomyopathies/complications , Heart Injuries/complications , Sepsis/complications , Sepsis/drug therapy
5.
J Med Life ; 16(6): 925-931, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37675155

ABSTRACT

Renal ischemia-reperfusion injury is a critical clinical condition with a potentially fatal prognosis if not adequately managed. NHWD-870, a known Brd4 inhibitor with anti-cancer properties, exhibits additional attributes such as antioxidant, anti-inflammatory, and anti-apoptotic effects, suggesting its potential to preserve renal tissue and mitigate damage during ischemic insults. We aimed to assess the potential nephroprotective effect of NHWD-870 by investigating its anti-apoptotic, anti-inflammatory, and antioxidant properties in a rat model of renal ischemia-reperfusion injury. Male Wistar Albino rats (n=24) were randomly assigned to four groups: sham, control, vehicle, and NHWD-870. The control group experienced bilateral renal ischemia for 30 minutes, followed by 2 hours of reperfusion, while the sham group underwent a laparotomy without ischemia-reperfusion induction. The vehicle group received a DMSO injection, and the NHWD-870 group was administered 3mg/kg NHWD-870 orally 24 hours before repeating the control group protocol. Blood samples were collected after reperfusion for blood urea nitrogen (BUN) and serum creatinine (SCr) analysis. ELISA method was used to assess IL-1B, BCL-2, PGF-2, and PI3K/AKT signaling pathways in renal tissue. Tubular injury severity was evaluated through histopathological analysis. NHWD-870 treatment improved renal function and histological preservation compared to the control and vehicle groups. BUN, sCR, IL-1B, BCL-2, and PGF-2 levels in renal tissue were significantly improved in the NHWD-870 group (p<0.05). Furthermore, the PI3K/AKT signaling pathway was significantly upregulated (p<0.01), and tubular injury severity was reduced in the NHWD-870 group. NHWD-870 demonstrated substantial nephroprotective effects in reducing renal damage induced by ischemia-reperfusion injury in rats. These effects may be attributed to the anti-apoptotic properties, as indicated by increased levels of the anti-apoptotic protein Bcl-2, and the reduction in oxidative stress marker PGF-2 through upregulation of the PI3K/AKT signaling pathway, along with the decrease in the inflammatory marker IL-1B.


Subject(s)
Phosphatidylinositol 3-Kinases , Reperfusion Injury , Male , Animals , Rats , Rats, Wistar , Proto-Oncogene Proteins c-akt , Antioxidants , Nuclear Proteins , Transcription Factors , Reperfusion Injury/drug therapy , Reperfusion Injury/prevention & control , Kidney/physiology , Signal Transduction
6.
J Med Life ; 16(5): 682-688, 2023 May.
Article in English | MEDLINE | ID: mdl-37520478

ABSTRACT

This study aimed to investigate the effects of JQ1 in a renal ischemia-reperfusion (IR) rat model. Twenty-four adult male Wistar Albino rats were randomly divided into four equal groups. The sham group underwent laparotomy without ischemia-reperfusion induction. The control group experienced bilateral renal ischemia for 30 minutes, followed by a 2-hour reperfusion period. The vehicle group (IR group + DMSO) and JQ1 group (same as in control IR + 25 mg/kg JQ1). Kidney and blood samples were collected 2 hours after reperfusion. Blood samples were used to analyze serum creatinine and blood urea nitrogen levels. Renal tissue was assessed for TNF-alpha, caspase-3, FOXO4, PI3K/AKT signaling pathway, and histological analysis. The control group exhibited significantly higher serum creatinine, blood urea nitrogen, caspase-3, TNF-alpha, and FOXO4 levels in renal tissue compared to the sham group. Additionally, the PI3K/AKT signaling pathway was significantly decreased in the control group. Histopathological examination revealed severe kidney damage in the control group compared to the sham group. In rats treated with JQ1, serum creatinine, BUN, caspase-3, TNF-alpha, and FOXO4 levels in renal tissue significantly improved. The PI3K/AKT signaling pathway was substantially increased (p-value 0.01) compared to the Vehicle and Control groups. The tubular severity score was also significantly reduced in the JQ1-treated groups compared to the Control and Vehicle groups. In conclusion, JQ1 significantly ameliorated renal ischemia-reperfusion injury in rats by suppressing apoptosis and inflammatory pathways.


Subject(s)
Proto-Oncogene Proteins c-akt , Reperfusion Injury , Rats , Male , Animals , Rats, Sprague-Dawley , Caspase 3/metabolism , Caspase 3/pharmacology , Proto-Oncogene Proteins c-akt/metabolism , Proto-Oncogene Proteins c-akt/pharmacology , Tumor Necrosis Factor-alpha/metabolism , Creatinine , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/pharmacology , Rats, Wistar , Kidney , Oxidative Stress , Ischemia , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Reperfusion Injury/pathology , Forkhead Transcription Factors/metabolism
7.
Wiad Lek ; 76(1): 122-130, 2023.
Article in English | MEDLINE | ID: mdl-36883500

ABSTRACT

OBJECTIVE: The aim: This study was set out to assess the potential protective impact of MK0752 (a gamma secretase inhibitor) on sepsis-induced renal injury through modulation of inflammatory and oxidative stress pathways. PATIENTS AND METHODS: Materials and methods: Twenty-four Swiss-albino mice aged between eight and twelve week and weighted twenty to thirty-seven grams were randomly allocated into four groups (n=6 in each group). Sham group (laparotomy without cecal ligation and puncture (CLP), sepsis group (laparotomy with CLP), vehicle-treated group (equivalent volume of DMSO before the CLP), MK0752 treated group (5 mg/kg) single daily dose for three days before the CLP. Blood samples were used to assess the serum levels of urea and creatinine. The kidneys were used to assess tissue levels of the TNF-α, IL-10, IL-6, TNFR1, VEGF, notch1, jagged1 and tissue damage by histopathological analysis. RESULTS: Results: The current study shows that pretreatment with MK0752 ameliorates the renal damage by significantly reducing the proinflammatory cytokines and notch1 signaling. CONCLUSION: Conclusions: Taken together, these results suggest that MK0752 could be protective against the renal injury induced by sepsis through its ameliorative impact on renal architecture and modulating cytokines and Notch1 singling pathway. Further studies regarding the role of Notch signaling pathways would be worthwhile.


Subject(s)
Amyloid Precursor Protein Secretases , Sepsis , Mice , Animals , Disease Models, Animal , Sepsis/complications , Sepsis/drug therapy , Cytokines , Kidney
8.
J Med Life ; 16(11): 1639-1645, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38406775

ABSTRACT

Sepsis, often resulting from an immune response overreaction to microorganisms and their products, can lead to acute lung injury through inflammation mediated by excessive cytokines. This study aimed to investigate the effects of regorafenib on lung injury in mice following the induction of sepsis. We divided mice into four groups (n=6 each): a sham group (undergoing laparotomy without cecal ligation and puncture [CLP]), a CLP group, a vehicle group, and a regorafenib-treated group (30 mg/kg IP, administered one hour before CLP). TNF-α, IL-1ß, VEGF, MPO, caspase-11, and Ang-2 levels were significantly increased (p<0.05) in the CLP group compared to the sham group, while the regorafenib group showed significant reductions in these markers versus the CLP group (p< 0.05). In contrast, Ang-1 levels, which were reduced in the CLP group (p<0.05) compared to the sham group, were elevated in the regorafenib group compared to the CLP group. Quantitative real-time PCR revealed a significant decrease in TIE2 and VE-cadherin mRNA expression in the lung tissue of the CLP group compared to the sham group. There were no significant differences in mRNA expression of the TIE2 gene between the regorafenib and CLP group. However, VE-cadherin significantly increased after regorafenib treatment. Regorafenib demonstrated lung-protective effects through its anti-inflammatory and antiangiogenic activities and its influence on lung tissue mRNA expression of the cadherin gene.


Subject(s)
Acute Lung Injury , Phenylurea Compounds , Pyridines , Sepsis , Mice , Animals , Angiopoietins , Lung , Acute Lung Injury/drug therapy , Acute Lung Injury/etiology , Sepsis/complications , Sepsis/drug therapy , RNA, Messenger , Tumor Necrosis Factor-alpha
9.
J Med Life ; 15(12): 1553-1562, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36762326

ABSTRACT

Cyclosporine A (CsA), a well-known immunosuppressive drug, has been prescribed after organ transplantation and in a variety of disorders with an immunological origin. Nephrotoxicity is one of the most frequently stated problems associated with CsA, and therefore the treatment with CsA remains a big challenge. This study sets out to assess the ameliorative influences of Candesartan Cilexetil (CC) on oxidative stress and the nephrotoxic effect of CsA in a rat model. Twenty-four Wister Albino rats, 7-8-week-old, weighing 150-250g, were randomly categorized into three groups (eight animals in each group). These groups were the (1) CsA-treated group, (2) vehicle-treated group, and (3) CC-treated group. Bodyweights were assessed at the start and end of experiments. Renal function test and levels of glutathione peroxidase 1 catalase -CAT (Gpx1), catalase (CAT), superoxide dismutase (SOD), interleukin -2 (IL-2), and malondialdehyde (MDA) were investigated in renal tissues. Histological changes in kidneys were also evaluated. Data showed that levels of urea and creatinine in serum and levels of IL-2 and MDA in renal tissues were elevated in the CsA-treated group, with severe histological changes compared with the control group. Furthermore, tissue levels of Gpx1, CAT, and SOD were significantly decreased in CsA-treated in comparison with the control group. Treatment with CC for the rats subjected to CSA resulted in a marked reduction in levels of serum urea and creatinine and tissue levels of IL-2 and MDA. Levels of Gpx1, CAT, and SOD in renal tissues were greater in the CC-treatment group compared with the CsA-treated group. CC treatment reduced the deterioration of renal morphology compared with CsA treatment. The findings of this study suggest that CC could prevent CSA-induced nephrotoxicity through its anti-inflammatory and antioxidant influences. Considerably more work needs to be done to determine the mechanistic insight behind the ameliorative effect of CC.


Subject(s)
Kidney Diseases , Renal Insufficiency , Animals , Rats , Cyclosporine/adverse effects , Catalase , Interleukin-2/metabolism , Interleukin-2/pharmacology , Interleukin-2/therapeutic use , Kidney Diseases/chemically induced , Kidney Diseases/drug therapy , Kidney Diseases/prevention & control , Creatinine , Rats, Wistar , Immunosuppressive Agents/adverse effects , Kidney , Oxidative Stress , Urea/metabolism , Urea/pharmacology , Urea/therapeutic use , Superoxide Dismutase/metabolism
10.
Wiad Lek ; 74(12): 3135-3146, 2021.
Article in English | MEDLINE | ID: mdl-35058379

ABSTRACT

OBJECTIVE: The aim: The current study was designed to examine the possible Nephroprotective effects of CMN in preventing nephrotoxicity and oxidative stress caused by chronic administration of CsA in rats. PATIENTS AND METHODS: Materials and methods: This study consisted of four groups and each group was made up of 8 rats. The first group was considered as a control group (received vehicle (0.9%N/S orally, and olive oil S.C), and the rest included the following: CMN group (received CMN in a dose of 30mg/kg/day orally), CsA group (received CsA in a dose of 20mg/kg/day S.C), and CMN plus CsA combination group (received CMN (30mg/kg/day, orally) plus CsA (20mg/kg/day, S.C) for 21days). For each group, the following variables wereassessed: Serum urea concentration, Serum creatinine concentration, initial body weight, final body weight, Tissue MDA level, Tissue GpX1 level, Tissue CAT level, Tissue SOD level, and tissue IL-2 level, and histopathological examination. RESULTS: Results: Mean levels of serum urea and creatinine, tissue MDA, tissue IL-2, and histopathological scores are significantly (P<0.05) increased in the CsA group compared with the control, and CMN groups (normal renal tissue). Tissue SOD, CAT, and GpX1 activities are significantly (P<0.05) decreased in the CsA group compared with the control, and CMN group. Concomitant administration of CMN with CsA resulted in significantly (P<0.05) lower elevated levels of MDA, serum urea, and creatinine, significantly higher levels of antioxidant enzymes, and normalization of the altered renal morphology compared with CsA treated rats. CONCLUSION: Conclusions: CMN has antioxidant and anti-inflammatory properties that protect the kidney from CsA's toxicity.


Subject(s)
Curcumin , Kidney Diseases , Renal Insufficiency , Animals , Curcumin/pharmacology , Curcumin/therapeutic use , Cyclosporine/toxicity , Kidney Diseases/chemically induced , Kidney Diseases/prevention & control , Rats , Rats, Wistar
11.
SAGE Open Med ; 1: 2050312113499912, 2013.
Article in English | MEDLINE | ID: mdl-26770677

ABSTRACT

BACK GROUND: Atherosclerosis is the major cause of death. The most common risk factors are hyperlipidemia, diabetes, and other factors like chronic infection and inflammation. OBJECTIVE: This study was undertaken to assess the effect of sitagliptin on atherosclerosis via interfering with inflammatory and oxidative pathways. MATERIALS AND METHODS: A total of 18 local domestic male rabbits were included in this study. The animals were randomly divided into three groups (6 rabbits in each group): Group I normal were fed with chow (oxiod) diet for 12 weeks. Group II were fed with 1% cholesterol enriched diet for 12 weeks. Group III rabbits fed with cholesterol enriched diet for 6 weeks, and then continued on cholesterol enriched diet and treated with sitagliptin 125 mg/kg/day orally for the next 6 weeks. Blood samples were collected at the start of the study, at 6 weeks of the study and then at the end of treatment to measure serum lipids profile, hsCRP and TNFα. At end of the study, the aorta was removed for measurement of MDA, glutathione and, aortic intima-media thickness. RESULTS: Sitagliptin results in a significant reduction (p < 0.05) in serum level of total cholesterol (TC), triglycerides (TG), high sensitive C-reactive protein (hsCRP) and TNFα with a significant increase (p < 0.05) in serum HDL level. There was a significant reduction (p < 0.05) in aortic MDA, in comparison to the untreated control group. Furthermore, sitagliptin causes significant increment (p < 0.05) in aortic GSH in comparison to induced untreated group. Regarding histopathological results, sitagliptin results in a significant reduction (p < 0.05) in atherosclerotic lesions in comparison to the induced untreated group and significant reduction in aortic intima-media thickness (p < 0.05). CONCLUSION: Sitagliptin reduced atherosclerosis progression in hyperlipidemic rabbit via its effect on lipid parameters and interfering with inflammatory and oxidative stress.

SELECTION OF CITATIONS
SEARCH DETAIL
...