Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Inf Technol Biomed ; 12(4): 480-7, 2008 Jul.
Article in English | MEDLINE | ID: mdl-18632328

ABSTRACT

Retinal clinicians and researchers make extensive use of images, and the current emphasis is on digital imaging of the retinal fundus. The goal of this paper is to introduce a system, known as retinal image vessel extraction and registration system, which provides the community of retinal clinicians, researchers, and study directors an integrated suite of advanced digital retinal image analysis tools over the Internet. The capabilities include vasculature tracing and morphometry, joint (simultaneous) montaging of multiple retinal fields, cross-modality registration (color/red-free fundus photographs and fluorescein angiograms), and generation of flicker animations for visualization of changes from longitudinal image sequences. Each capability has been carefully validated in our previous research work. The integrated Internet-based system can enable significant advances in retina-related clinical diagnosis, visualization of the complete fundus at full resolution from multiple low-angle views, analysis of longitudinal changes, research on the retinal vasculature, and objective, quantitative computer-assisted scoring of clinical trials imagery. It could pave the way for future screening services from optometry facilities.


Subject(s)
Fluorescein Angiography/methods , Image Enhancement/methods , Internet , Pattern Recognition, Automated/methods , Remote Consultation/methods , Retinal Vessels/anatomy & histology , Retinoscopy/methods , Artificial Intelligence , Image Interpretation, Computer-Assisted/methods
2.
IEEE Trans Biomed Eng ; 54(8): 1436-45, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17694864

ABSTRACT

Algorithms are presented for integrated analysis of both vascular and nonvascular changes observed in longitudinal time-series of color retinal fundus images, extending our prior work. A Bayesian model selection algorithm that combines color change information, and image understanding systems outputs in a novel manner is used to analyze vascular changes such as increase/decrease in width, and disappearance/appearance of vessels, as well as nonvascular changes such as appearance/disappearance of different kinds of lesions. The overall system is robust to false changes due to inter-image and intra-image nonuniform illumination, imaging artifacts such as dust particles in the optical path, alignment errors and outliers in the training-data. An expert observer validated the algorithms on 54 regions selected from 34 image pairs. The regions were selected such that they represented diverse types of vascular changes of interest, as well as no-change regions. The algorithm achieved a sensitivity of 82% and a 9% false positive rate for vascular changes. For the nonvascular changes, 97% sensitivity and a 10% false positive rate are achieved. The combined system is intended for diverse applications including computer-assisted retinal screening, image-reading centers, quantitative monitoring of disease onset and progression, assessment of treatment efficacy, and scoring clinical trials.


Subject(s)
Artificial Intelligence , Colorimetry/methods , Image Interpretation, Computer-Assisted/methods , Pattern Recognition, Automated/methods , Retinal Vessels/anatomy & histology , Retinoscopy/methods , Subtraction Technique , Algorithms , Humans , Image Enhancement/methods , Reproducibility of Results , Sensitivity and Specificity , Systems Integration
3.
IEEE Trans Biomed Eng ; 53(6): 1084-98, 2006 Jun.
Article in English | MEDLINE | ID: mdl-16761836

ABSTRACT

A fully automated approach is presented for robust detection and classification of changes in longitudinal time-series of color retinal fundus images of diabetic retinopathy. The method is robust to: 1) spatial variations in illumination resulting from instrument limitations and changes both within, and between patient visits; 2) imaging artifacts such as dust particles; 3) outliers in the training data; 4) segmentation and alignment errors. Robustness to illumination variation is achieved by a novel iterative algorithm to estimate the reflectance of the retina exploiting automatically extracted segmentations of the retinal vasculature, optic disk, fovea, and pathologies. Robustness to dust artifacts is achieved by exploiting their spectral characteristics, enabling application to film-based, as well as digital imaging systems. False changes from alignment errors are minimized by subpixel accuracy registration using a 12-parameter transformation that accounts for unknown retinal curvature and camera parameters. Bayesian detection and classification algorithms are used to generate a color-coded output that is readily inspected. A multiobserver validation on 43 image pairs from 22 eyes involving nonproliferative and proliferative diabetic retinopathies, showed a 97% change detection rate, a 3% miss rate, and a 10% false alarm rate. The performance in correctly classifying the changes was 99.3%. A self-consistency metric, and an error factor were developed to measure performance over more than two periods. The average self consistency was 94% and the error factor was 0.06%. Although this study focuses on diabetic changes, the proposed techniques have broader applicability in ophthalmology.


Subject(s)
Artificial Intelligence , Colorimetry/methods , Diabetic Retinopathy/pathology , Fluorescein Angiography/methods , Image Enhancement/methods , Image Interpretation, Computer-Assisted/methods , Retina/pathology , Algorithms , Color , Humans , Pattern Recognition, Automated/methods , Reproducibility of Results , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...