Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Insect Mol Biol ; 30(3): 297-314, 2021 06.
Article in English | MEDLINE | ID: mdl-33455040

ABSTRACT

The hormone 20-hydroxyecdysone is fundamental for regulating moulting and metamorphosis in immature insects, and it plays a role in physiological regulation in adult insects. This hormone acts by binding and activating a receptor, the ecdysone receptor, which is part of the nuclear receptor gene superfamily. Here, we analyse the genome of the kissing bug Rhodnius prolixus to annotate the nuclear receptor superfamily genes. The R. prolixus genome displays a possible duplication of the HNF4 gene. All the analysed insect organs express most nuclear receptor genes as shown by RT-PCR. The quantitative PCR analysis showed that the RpEcR and RpUSP genes are highly expressed in the testis, while the RpHNF4-1 and RpHNF4-2 genes are more active in the fat body and ovaries and in the anterior midgut, respectively. Feeding does not induce detectable changes in the expression of these genes in the fat body. However, the expression of the RpHNF4-2 gene is always higher than that of RpHNF4-1. Treating adult females with 20-hydroxyecdysone increased the amount of triacylglycerol stored in the fat bodies by increasing their lipogenic capacity. These results indicate that 20-hydroxyecdysone acts on the lipid metabolism of adult insects, although the underlying mechanism is not clear.


Subject(s)
Ecdysterone/metabolism , Heteroptera/genetics , Lipid Metabolism , Multigene Family , Receptors, Cytoplasmic and Nuclear/genetics , Animals , Heteroptera/metabolism , Molecular Sequence Annotation , Receptors, Cytoplasmic and Nuclear/metabolism
2.
Biochim Biophys Acta ; 1830(3): 2683-9, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23671929

ABSTRACT

BACKGROUND: Proliferation of Leishmania infantum depends on exogenous inorganic phosphate (P(i)) but little is known about energy metabolism and transport of P(i) across the plasma membrane in Leishmania sp. METHODS: We investigated the kinetics of 32P(i) transport, the influence of H+ and K+ ionophores and inhibitors, and expression of the genes for the Na+:P(i) and H+:P(i) cotransporters. RESULTS: The proton ionophore FCCP, bafilomycin A1 (vacuolar ATPase inhibitor), nigericin (K+ ionophore) and SCH28080 (an inhibitor of H+, K(+)-ATPase) all inhibited the transport of P(i). This transport showed Michaelis-Menten kinetics with K0.5 and V(max) values of 0.016 +/- 0.002 mM and 564.9 +/- 18.06 pmol x h(-1) x 10(-7) cells, respectively. These values classify the P(i) transporter of L. infantum among the high-affinity transporters, a group that includes Pho84 of Saccharomyces cerevisiae. Two sequences were identified in the L. infantum genome that code for phosphate transporters. However, transcription of the PHO84 transporter was 10-fold higher than the PHO89 transporter in this parasite. Accordingly, P(i) transport and LiPho84 gene expression were modulated by environmental P(i) variations. CONCLUSIONS: These findings confirm the presence of a P(i) transporter in L. infantum, similar to PHO84 in S. cerevisiae, that contributes to the acquisition of inorganic phosphate and could be involved in growth and survival of the promastigote forms of L. infantum. GENERAL SIGNIFICANCE: This work provides the first description of a PHO84-like P(i) transporter in a Trypanosomatide parasite of the genus Leishmania, responsible for many infections worldwide.


Subject(s)
Leishmania infantum/enzymology , Phosphates/metabolism , Protozoan Proteins/metabolism , Amino Acid Sequence , Biological Transport , Carbonyl Cyanide p-Trifluoromethoxyphenylhydrazone/pharmacology , Culture Media , Enzyme Inhibitors/pharmacology , Gene Expression Regulation/drug effects , Imidazoles/pharmacology , Kinetics , Leishmania infantum/genetics , Macrolides/pharmacology , Molecular Sequence Data , Nigericin/pharmacology , Phosphates/pharmacology , Phosphorus Radioisotopes , Phylogeny , Proton Ionophores/pharmacology , Proton-Phosphate Symporters/antagonists & inhibitors , Proton-Phosphate Symporters/genetics , Proton-Phosphate Symporters/metabolism , Protozoan Proteins/genetics , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Sodium-Phosphate Cotransporter Proteins/antagonists & inhibitors , Sodium-Phosphate Cotransporter Proteins/metabolism , Sodium-Potassium-Exchanging ATPase/antagonists & inhibitors , Sodium-Potassium-Exchanging ATPase/metabolism , Vacuolar Proton-Translocating ATPases/antagonists & inhibitors , Vacuolar Proton-Translocating ATPases/metabolism
3.
Biochim Biophys Acta ; 1830(8): 4265-73, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23643965

ABSTRACT

BACKGROUND: Orthophosphate (Pi) is a central compound in the metabolism of all organisms, including parasites. There are no reports regarding the mechanisms of Pi acquisition by Trypanosoma cruzi. METHODS: (32)Pi influx was measured in T. cruzi epimastigotes. The expression of Pi transporter genes and the coupling of the uptake to Na(+), H(+) and K(+) fluxes were also investigated. The transport capacities of different evolutive forms were compared. RESULTS: Epimastigotes grew significantly more slowly in 2mM than in 50mM Pi. Influx of Pi into parasites grown under low Pi conditions took place in the absence and presence of Na(+). We found that the parasites express TcPho84, a H(+):Pi-symporter, and TcPho89, a Na(+):Pi-symporter. Both Pi influx mechanisms showed Michaelis-Menten kinetics, with a one-order of magnitude higher affinity for the Na(+)-dependent system. Collapsing the membrane potential with carbonylcyanide-p-trifluoromethoxyphenylhydrazone strongly impaired the influx of Pi. Valinomycin (K(+) ionophore) or SCH28028 (inhibitor of (H(+)+K(+))ATPase) significantly inhibited Pi uptake, indicating that an inwardly-directed H(+) gradient energizes uphill Pi entry and that K(+) recycling plays a key role in Pi influx. Furosemide, an inhibitor of the ouabain-insensitive Na(+)-ATPase, decreased only the Na(+)-dependent Pi uptake, indicating that this Na(+) pump generates the Na(+) gradient utilized by the symporter. Trypomastigote forms take up Pi inefficiently. CONCLUSIONS: Pi starvation stimulates membrane potential-sensitive Pi uptake through different pathways coupled to Na(+) or H(+)/K(+) fluxes. GENERAL SIGNIFICANCE: This study unravels the mechanisms of Pi acquisition by T. cruzi, a key process in epimastigote development and differentiation to trypomastigote forms.


Subject(s)
Phosphates/metabolism , Potassium/metabolism , Sodium/metabolism , Trypanosoma cruzi/metabolism , H(+)-K(+)-Exchanging ATPase/metabolism , Hydrogen-Ion Concentration , Imidazoles/pharmacology , Valinomycin/pharmacology
4.
Biochim Biophys Acta ; 1830(3): 2683-2689, 2013 Mar.
Article in English | MEDLINE | ID: mdl-23201200

ABSTRACT

BACKGROUND: Proliferation of Leishmania infantum depends on exogenous inorganic phosphate (Pi) but little is known about energy metabolism and transport of Pi across the plasma membrane in Leishmania sp. METHODS: We investigated the kinetics of 32Pi transport, the influence of H+ and K+ ionophores and inhibitors, and expression of the genes for the Na+:Pi and H+:Pi cotransporters. RESULTS: The proton ionophore FCCP, bafilomycin A1 (vacuolar ATPase inhibitor), nigericin (K+ ionophore) and SCH28080 (an inhibitor of H+, K+-ATPase) all inhibited the transport of Pi. This transport showed Michaelis-Menten kinetics with K0.5 and Vmax values of 0.016±0.002mM and 564.9±18.06pmol×h-1×10-7cells, respectively. These values classify the Pi transporter of L. infantum among the high-affinity transporters, a group that includes Pho84 of Saccharomyces cerevisiae. Two sequences were identified in the L. infantum genome that code for phosphate transporters. However, transcription of the PHO84 transporter was 10-fold higher than the PHO89 transporter in this parasite. Accordingly, Pi transport and LiPho84 gene expression were modulated by environmental Pi variations. CONCLUSIONS: These findings confirm the presence of a Pi transporter in L. infantum, similar to PHO84 in S. cerevisiae, that contributes to the acquisition of inorganic phosphate and could be involved in growth and survival of the promastigote forms of L. infantum. GENERAL SIGNIFICANCE: This work provides the first description of a PHO84-like Pi transporter in a Trypanosomatide parasite of the genus Leishmania, responsible for many infections worldwide.

5.
Biochim Biophys Acta ; 1820(7): 1001-8, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22456227

ABSTRACT

BACKGROUND: Trypanosoma rangeli is dependent on the presence of exogenous orthophosphate (Pi) for maximal growth and ecto-phosphatase activity is responsible for Pi supply under low Pi. Here we investigated the mechanisms of Pi uptake. METHODS: We investigated the kinetics of 32Pi transport, its Na+ and H+ dependence, its correlation with the Na+-ATPase and H+-ATPase, and gene expression of the Na+:Pi cotransporter and Na+-ATPase. RESULTS: T. rangeli grown under limiting Pi transports this anion to the cytosol in the absence and presence of Na+, suggesting that influx is mediated by both Na+-independent and Na+-dependent transporters. Cloning studies demonstrated that this parasite expresses a Pi transporter not previously studied in trypanosomatids. The H+ ionophore, carbonylcyanide-p-trifluoromethoxyphenylhydrazone, decreased both components of 32Pi influx by 80-95%. The H+-ATPase inhibitor, bafilomycin A1, inhibited the Na+-independent mechanism. Furosemide, an inhibitor of ouabain-insensitive Na+-ATPase, decreased both uptake mechanisms of 32Pi to the same extent, whereas ouabain had no effect, indicating that the former is the pump responsible for inwardly directed Na+ and the electric gradients required by the transporters. Parasite growth in high Pi had a lower Pi influx than that found in those grown in low Pi, without alteration in TrPho89 expression, showing that turnover of the transporters is stimulated by Pi starvation. CONCLUSIONS: Two modes of Pi transport, one coupled to Na+-ATPase and other coupled to H+-ATPase seem to be responsible for Pi acquisition during development of T. rangeli. GENERAL SIGNIFICANCE: This study provides the first description of the mechanism of Pi transport across the plasma membrane of trypanosomatids.


Subject(s)
Phosphates/metabolism , Rhodnius/parasitology , Sodium/metabolism , Trypanosoma/metabolism , Adenosine Triphosphatases/antagonists & inhibitors , Adenosine Triphosphatases/metabolism , Animals , Biological Transport , Cation Transport Proteins/antagonists & inhibitors , Cation Transport Proteins/metabolism , Cell Membrane/metabolism , Enzyme Inhibitors/pharmacology , Macrolides/pharmacology , Ouabain/pharmacology , Proton-Translocating ATPases/antagonists & inhibitors , Proton-Translocating ATPases/metabolism , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Rhodnius/metabolism , Trypanosoma/growth & development
6.
Insect Mol Biol ; 20(6): 713-22, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21929722

ABSTRACT

Quantitative real-time PCR (qPCR) has become one of the most used techniques to measure gene expression. However, normalization of gene expression data against reference genes is essential, although these are usually used without any kind of validation. The expression of seven genes was compared in organs of Rhodnius prolixus under diverse conditions, using published software to test gene expression stability. Rp18S and elongation factor 1 (RpEF -1) were the most reliable genes for normalization in qPCR when gene expression in different organs was compared. Moreover, both genes were found to be the best references when transcript levels were compared in the posterior midgut of insects infected with Trypanosoma cruzi. Rp18S was also the best reference gene in the fat bodies of unfed and fed insects. By contrast, RpEF-1 was found to be the best reference gene for comparison between posterior midguts, and RpMIP or RpActin should be used to compare gene expression in the ovaries. Although Rp18S is indicated here as the best reference in most cases, reports from the literature show that it is difficult to find an optimum reference gene. Nevertheless, validation of candidate genes to be taken as references is important when new experimental conditions are tested to avoid incorrect data interpretation.


Subject(s)
Rhodnius/genetics , Animals , Female , Gene Expression , Genes, Insect , Genes, rRNA , Peptide Elongation Factor 1/genetics , RNA, Ribosomal, 18S/genetics , Real-Time Polymerase Chain Reaction , Reference Standards
SELECTION OF CITATIONS
SEARCH DETAIL
...