Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochim Biophys Acta Biomembr ; 1864(2): 183824, 2022 02 01.
Article in English | MEDLINE | ID: mdl-34838874

ABSTRACT

Antimicrobial peptides (AMPs) are naturally occurring promising candidates which can be used as antibiotics against a wide variety of bacteria. The key component for using them as a potent antibiotic is that their mechanism of action is less prone to bacterial resistance. However, the molecular details of their mechanism of action is not yet fully understood. In this study, we try to shed light on the mode of action of AMPs, possible reason behind it, and their interaction with lipid bilayers through experimental as well as molecular dynamics (MD) simulation studies. The focal of our study was Human beta defensin 3 (hBD-3) which is a naturally occurring AMP. We chose three derivatives of hBD-3, namely CHRG01, KSR, and KLR for the detailed analysis presented in this study. These three peptides are evaluated for their antibacterial potency, secondary structure analysis and mechanism of action. The experimental results reveal that these peptides are active against gram positive as well as gram negative bacteria and kill bacteria by forming membrane pores. The MD simulation results correlate well with the antibacterial activity and shed light into the early membrane insertion dynamics. Moreover, the specific amino acids responsible for membrane disruptions are also identified from the MD simulations. Understanding the molecular level interaction of individual amino acids with the lipid bilayer will greatly help in the design of more efficient antimicrobial peptides.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Bacteria/drug effects , Fibroblasts/drug effects , Lipid Bilayers/metabolism , Molecular Dynamics Simulation , beta-Defensins/pharmacology , Animals , Humans , Mice , Mice, Inbred C3H
2.
RSC Adv ; 11(46): 28581-28592, 2021 Aug 23.
Article in English | MEDLINE | ID: mdl-35478531

ABSTRACT

Hybrid antimicrobials that combine the effect of two or more agents represent a promising antibacterial therapeutic strategy. In this work, we have synthesized N-(4-(4-(methylsulfonyl)phenyl)-5-phenylthiazol-2-yl)benzenesulfonamide derivatives that combine thiazole and sulfonamide, groups with known antibacterial activity. These molecules are investigated for their antibacterial activity, in isolation and in complex with the cell-penetrating peptide octaarginine. Several of the synthesized compounds display potent antibacterial activity against both Gram-negative and Gram-positive bacteria. Compounds with 4-tert-butyl and 4-isopropyl substitutions exhibit attractive antibacterial activity against multiple strains. The isopropyl substituted derivative displays low MIC of 3.9 µg mL-1 against S. aureus and A. xylosoxidans. The comparative antibacterial behaviour of drug-peptide complex, drug alone and peptide alone indicates a distinctive mode of action of the drug-peptide complex, that is not the simple sum total of its constituent components. Specificity of the drug-peptide complex is evident from comparison of antibacterial behaviour with a synthetic intermediate-peptide complex. The octaarginine-drug complex displays faster killing-kinetics towards bacterial cells, creates pores in the bacterial cell membranes and shows negligible haemolytic activity towards human RBCs. Our results demonstrate that mere attachment of a hydrophobic moiety to a cell penetrating peptide does not impart antibacterial activity to the resultant complex. Conversely, the work suggests distinctive modes of antibiotic activity of small molecules when used in conjunction with a cell penetrating peptide.

SELECTION OF CITATIONS
SEARCH DETAIL
...