Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Eur Phys J C Part Fields ; 82(3): 248, 2022.
Article in English | MEDLINE | ID: mdl-35399983

ABSTRACT

The COSINUS (Cryogenic Observatory for SIgnatures seen in Next-generation Underground Searches) experiment aims at the detection of dark matter-induced recoils in sodium iodide (NaI) crystals operated as scintillating cryogenic calorimeters. The detection of both scintillation light and phonons allows performing an event-by-event signal to background discrimination, thus enhancing the sensitivity of the experiment. The choice of using NaI crystals is motivated by the goal of probing the long-standing DAMA/LIBRA results using the same target material. The construction of the experimental facility is foreseen to start by 2021 at the INFN Gran Sasso National Laboratory (LNGS) in Italy. It consists of a cryostat housing the target crystals shielded from the external radioactivity by a water tank acting, at the same time, as an active veto against cosmic ray-induced events. Taking into account both environmental radioactivity and intrinsic contamination of materials used for cryostat, shielding and infrastructure, we performed a careful background budget estimation. The goal is to evaluate the number of events that could mimic or interfere with signal detection while optimising the geometry of the experimental setup. In this paper we present the results of the detailed Monte Carlo simulations we performed, together with the final design of the setup that minimises the residual amount of background particles reaching the detector volume.

2.
J Contam Hydrol ; 102(1-2): 105-19, 2008 Nov 14.
Article in English | MEDLINE | ID: mdl-18929427

ABSTRACT

The transfer of contaminant mass between the nonaqueous- and aqueous-phases is a process of central importance for the remediation of sites contaminated by dense nonaqueous-phase liquids (DNAPLs). This paper describes a comparison of the results obtained with various alternative DNAPL-aqueous-phase mass transfer models contained in the literature for predicting DNAPL source-zone depletion times in groundwater systems. These dissolution models were largely developed through laboratory column experiments. To gain insight into the implications of various representations of the local-scale kinetic as well as equilibrium DNAPL dissolution processes, aquifer heterogeneity and the complex architecture of a DNAPL source-zone, the aqueous-phase contaminant concentrations and mass fluxes arriving at a down-gradient compliance boundary are analyzed in a conditional stochastic framework. The hydrogeologic setting is a heterogeneous fluvial aquifer in Southwest Germany, referred to as the aquifer analog dataset, that was intensively characterized in three dimensions for hydrogeological parameters that include permeability, effective porosity, grain size, mineralogy and sorption coefficients. By embedding the various dissolution models into the compositional, multiphase flow model, CompFlow, the relative times predicted for complete depletion of a released DNAPL source due to natural dissolution are explored. Issues related to achieving environmental benefits through, for example, partial DNAPL-zone source removal via enhanced remedial technologies are also discussed. In this context, performance metrics in the form of peak aqueous-phase contaminant concentrations and mass fluxes arriving at a down-gradient compliance boundary are compared to each other. This is done for each of the alternative mass transfer models. A significant reduction in the fractional flux at a downstream location from the DNAPL source can be achieved by partial source-zone mass reduction; however, peak concentration levels at the same location remain much higher than the United States Environment Protection Agency (US-EPA) drinking water limits. Although groundwater quality was found to improve more rapidly for the equilibrium dissolution model, it is also shown that dissolution models that promote rapid DNAPL disappearance produce greater prediction uncertainty in the aqueous-phase flux reduction.


Subject(s)
Environmental Restoration and Remediation , Models, Chemical , Water Purification/methods , Computer Simulation , Porosity , Sensitivity and Specificity , Thermal Conductivity , Water Pollutants, Chemical/isolation & purification , Water Purification/instrumentation
3.
J Contam Hydrol ; 96(1-4): 83-96, 2008 Feb 19.
Article in English | MEDLINE | ID: mdl-18022279

ABSTRACT

When considering natural attenuation as a remediation strategy at a site contaminated by a light non-aqueous phase liquid (LNAPL), it is important to consider the emission of contaminants from the source zone. A quantification of source-zone emissions is essential both for comparison with down-gradient mass fluxes to provide an estimate of fractional mass flux reduction, as well as for estimating the source lifetime. Because the spatial distribution of LNAPL at a field site is strongly dependent on both the spill circumstances and the heterogeneity of the geologic materials, which can be problematic for in-situ determination, alternative methods for estimating source-zone emissions are needed. In this work, a three-dimensional multiphase flow and transport modelling approach is used to investigate the relationship between the lateral extent of an LNAPL body and the emission of contaminants to groundwater at a contaminated site. For simulations involving an LNAPL release in an aquifer comprised of heterogeneous porosity and permeability distributions that were generated geostatistically, it is shown that a simple linear relationship exists between the lateral extent of the LNAPL body in the capillary fringe and the emission to the aqueous phase. The parameters describing the relationship are found to be linear functions of the groundwater flow velocity and the vertical infiltration rate. This site-specific relationship provides a simple method to estimate contaminant emissions to groundwater at LNAPL contaminated sites.


Subject(s)
Water Pollutants/analysis , Water Pollutants/chemistry , Chemical Phenomena , Chemistry, Physical , Computer Simulation , Germany , Water Movements
4.
Ground Water ; 44(6): 853-63, 2006.
Article in English | MEDLINE | ID: mdl-17087757

ABSTRACT

At sites where a dense nonaqueous phase liquid (DNAPL) was spilled or released into the subsurface, estimates of the mass of DNAPL contained in the subsurface from core or monitoring well data, either in the nonaqueous or aqueous phase, can be highly uncertain because of the erratic distribution of the DNAPL due to geologic heterogeneity. In this paper, a multiphase compositional model is applied to simulate, in detail, the DNAPL saturations and aqueous-phase plume migration in a highly characterized, heterogeneous glaciofluvial aquifer, the permeability and porosity data of which were collected by researchers at the University of Tübingen, Germany. The DNAPL saturation distribution and the aqueous-phase contaminant mole fractions are then reconstructed by sampling the data from the forward simulation results using two alternate approaches, each with different degrees of sampling conditioning. To reconstruct the DNAPL source zone architecture, the aqueous-phase plume configuration, and the contaminant mass in each phase, one method employs the novel transition probability/Markov chain approach (TP/MC), while the other involves a traditional variogram analysis of the sampled data followed by ordinary kriging. The TP/MC method is typically used for facies and/or hydraulic conductivity reconstruction, but here we explore the applicability of the TP/MC method for the reconstruction of DNAPL source zones and aqueous-phase plumes. The reconstructed geometry of the DNAPL source zone, the dissolved contaminant plume, and the estimated mass in each phase are compared using the two different geostatistical modeling approaches and for various degrees of data sampling from the results of the forward simulation. It is demonstrated that the TP/MC modeling technique is robust and accurate and is a preferable alternative compared to ordinary kriging for the reconstruction of DNAPL saturation patterns and dissolved-phase contaminant plumes.


Subject(s)
Environmental Restoration and Remediation , Markov Chains , Models, Theoretical , Computer Simulation , Trichloroethylene
SELECTION OF CITATIONS
SEARCH DETAIL
...