Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Molecules ; 20(7): 11808-29, 2015 Jun 26.
Article in English | MEDLINE | ID: mdl-26132906

ABSTRACT

The present study reports a bioassay-guided isolation of ß-caryophyllene from the essential oil of Aquilaria crassna. The structure of ß-caryophyllene was confirmed using FT-IR, NMR and MS. The antimicrobial effect of ß-caryophyllene was examined using human pathogenic bacterial and fungal strains. Its anti-oxidant properties were evaluated by DPPH and FRAP scavenging assays. The cytotoxicity of ß-caryophyllene was tested against seven human cancer cell lines. The corresponding selectivity index was determined by testing its cytotoxicity on normal cells. The effects of ß-caryophyllene were studied on a series of in vitro antitumor-promoting assays using colon cancer cells. Results showed that ß-caryophyllene demonstrated selective antibacterial activity against S. aureus (MIC 3 ± 1.0 µM) and more pronounced anti-fungal activity than kanamycin. ß-Caryophyllene also displayed strong antioxidant effects. Additionally, ß-caryophyllene exhibited selective anti-proliferative effects against colorectal cancer cells (IC50 19 µM). The results also showed that ß-caryophyllene induces apoptosis via nuclear condensation and fragmentation pathways including disruption of mitochondrial membrane potential. Further, ß-caryophyllene demonstrated potent inhibition against clonogenicity, migration, invasion and spheroid formation in colon cancer cells. These results prompt us to state that ß-caryophyllene is the active principle responsible for the selective anticancer and antimicrobial activities of A. crassnia. ß-Caryophyllene has great potential to be further developed as a promising chemotherapeutic agent against colorectal malignancies.


Subject(s)
Anti-Infective Agents/pharmacology , Antineoplastic Agents/pharmacology , Antioxidants/pharmacology , Oils, Volatile/chemistry , Sesquiterpenes/pharmacology , Thymelaeaceae/chemistry , Cell Line, Tumor , Drug Screening Assays, Antitumor , Humans , Microbial Sensitivity Tests , Molecular Structure , Polycyclic Sesquiterpenes , Sesquiterpenes/chemistry , Sesquiterpenes/isolation & purification
2.
PLoS One ; 8(11): e80983, 2013.
Article in English | MEDLINE | ID: mdl-24260527

ABSTRACT

Benzyl-o-vanillin and benzimidazole nucleus serve as important pharmacophore in drug discovery. The benzyl vanillin (2-(benzyloxy)-3-methoxybenzaldehyde) compound shows anti-proliferative activity in HL60 leukemia cancer cells and can effect cell cycle progression at G2/M phase. Its apoptosis activity was due to disruption of mitochondrial functioning. In this study, we have studied a series of compounds consisting of benzyl vanillin and benzimidazole structures. We hypothesize that by fusing these two structures we can produce compounds that have better anticancer activity with improved specificity particularly towards the leukemia cell line. Here we explored the anticancer activity of three compounds namely 2-(2-benzyloxy-3-methoxyphenyl)-1H-benzimidazole, 2MP, N-1-(2-benzyloxy-3-methoxybenzyl)-2-(2-benzyloxy-3-methoxyphenyl)-1H-benzimidazole, 2XP, and (R) and (S)-1-(2-benzyloxy-3-methoxyphenyl)-2, 2, 2-trichloroethyl benzenesulfonate, 3BS and compared their activity to 2-benzyloxy-3-methoxybenzaldehyde, (Bn1), the parent compound. 2XP and 3BS induces cell death of U937 leukemic cell line through DNA fragmentation that lead to the intrinsic caspase 9 activation. DNA binding study primarily by the equilibrium binding titration assay followed by the Viscosity study reveal the DNA binding through groove region with intrinsic binding constant 7.39 µM/bp and 6.86 µM/bp for 3BS and 2XP respectively. 2XP and 3BS showed strong DNA binding activity by the UV titration method with the computational drug modeling showed that both 2XP and 3BS failed to form any electrostatic linkages except via hydrophobic interaction through the minor groove region of the nucleic acid. The benzylvanillin alone (Bn1) has weak anticancer activity even after it was combined with the benzimidazole (2MP), but after addition of another benzylvanillin structure (2XP), stronger activity was observed. Also, the combination of benzylvanillin with benzenesulfonate (3BS) significantly improved the anticancer activity of Bn1. The present study provides a new insight of benzyl vanillin derivatives as potential anti-leukemic agent.


Subject(s)
Antineoplastic Agents/pharmacology , Benzaldehydes/chemistry , Benzenesulfonates/chemistry , Benzimidazoles/chemistry , DNA, Neoplasm/metabolism , Drug Design , Antineoplastic Agents/chemical synthesis , Apoptosis/drug effects , Binding Sites , Caspase 9 , Cell Line, Tumor , Cell Proliferation/drug effects , DNA Fragmentation/drug effects , DNA, Neoplasm/chemistry , G2 Phase Cell Cycle Checkpoints/drug effects , Humans , Hydrophobic and Hydrophilic Interactions , Inhibitory Concentration 50 , Molecular Docking Simulation , Quantitative Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...