Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
Mol Biol Rep ; 51(1): 307, 2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38365995

ABSTRACT

BACKGROUND: Sweet corn is gaining tremendous demand worldwide due to urbanization and changing consumer preferences. However, genetic improvement in this crop is being limited by narrow genetic base and other undesirable agronomic traits that hinder the development of superior cultivars. The main requirement in this direction is the development of potentially promising parental lines. One of the most important strategies in this direction is to develop such lines from hybrid-oriented source germplasm which may provide diverse base material with desirable biochemical and agro-morphological attributes. METHODS AND RESULTS: The study was undertaken to carry out morphological and biochemical evaluation of 80 early generation inbred lines (S2) of sweet corn that were developed from a cross between two single cross sweet corn hybrids (Mithas and Sugar-75). Moreover, validation of favourable recessive alleles for sugar content was carried out using SSR markers. The 80 sweet corn inbreds evaluated for phenotypic characterization showed wide range of variability with respect to different traits studied. The highest content of total carotenoids was found in the inbred S27 (34 µg g-1) followed by the inbred S65 (31.1 µg g-1). The highest content for total sugars was found in S60 (8.54%) followed by S14 (8.34%). Molecular characterization of 80 inbred lines led to the identification of seven inbreds viz., S21, S28, S47, S48, S49, S53, and S54, carrying the alleles specific to the sugary gene (su1) with respect to the markers umc2061 and bnlg1937. Comparing the results of scatter plot for biochemical and morphological traits, it was revealed that inbreds S9, S23, S27 and S36 contain high levels of total sugars and total carotenoids along with moderate values for amylose and yield attributing traits. CONCLUSION: The inbred lines identified with desirable biochemical and agro-morphological attributes in the study could be utilized as source of favourable alleles in sweet corn breeding programmes after further validation for disease resistance and other agronomic traits. Consequently, the study will not only enhance the genetic base of sweet corn germplasm but also has the potential to develop high-yielding hybrids with improved quality. The inbreds possessing su1 gene on the basis of umc2061 and bnlg1937 markers were also found to possess high sugar content. This indicates the potential of these lines as desirable candidates for breeding programs aimed at improving sweet corn yield and quality. These findings also demonstrate the effectiveness of the molecular markers in facilitating marker-assisted selection for important traits in sweet corn breeding.


Subject(s)
Plant Breeding , Zea mays , Zea mays/genetics , Phenotype , Vegetables , Sugars , Carotenoids
2.
Stem Cell Res Ther ; 12(1): 205, 2021 03 24.
Article in English | MEDLINE | ID: mdl-33761999

ABSTRACT

BACKGROUND: Immortalized, clonal HB1.F3.CD 21 human neural stem/progenitor cells (NSCs), loaded with therapeutic cargo prior to intraperitoneal (IP) injection, have been shown to improve the delivery and efficacy of therapeutic agents in pre-clinical models of stage III ovarian cancer. In previous studies, the distribution and efficacy of the NSC-delivered cargo has been examined; however, the fate of the NSCs has not yet been explored. METHODS: To monitor NSC tropism, we used an unconventional method of quantifying endocytosed gold nanorods to overcome the weaknesses of existing cell-tracking technologies. RESULTS: Here, we report efficient tumor tropism of HB1.F3.CD 21 NSCs, showing that they primarily distribute to the tumor stroma surrounding individual tumor foci within 3 h after injection, reaching up to 95% of IP metastases without localizing to healthy tissue. Furthermore, we demonstrate that these NSCs are non-tumorigenic and non-immunogenic within the peritoneal setting. CONCLUSIONS: Their efficient tropism, combined with their promising clinical safety features and potential for cost-effective scale-up, positions this NSC line as a practical, off-the-shelf platform to improve the delivery of a myriad of peritoneal cancer therapeutics.


Subject(s)
Hematopoietic Stem Cell Transplantation , Neural Stem Cells , Ovarian Neoplasms , Female , Humans , Ovarian Neoplasms/therapy , Peritoneum
3.
Mol Ther Oncolytics ; 18: 326-334, 2020 Sep 25.
Article in English | MEDLINE | ID: mdl-32775617

ABSTRACT

Oncolytic virotherapy represents a promising approach for treating recurrent and/or drug-resistant ovarian cancer. However, its successful application in the clinic has been hampered by rapid immune-mediated clearance, which reduces viral delivery to the tumor. Patient-derived mesenchymal stem cells that home to tumors have been used as viral delivery tools, but variability associated with autologous cell isolations limits the clinical applicability of this approach. We previously developed an allogeneic, clonal neural stem cell (NSC) line (HB1.F3.CD21) that can be used to deliver viral cargo. Here, we demonstrate that this NSC line can improve the delivery of a thymidine kinase gene-deficient conditionally replication-competent orthopoxvirus, CF33, in a preclinical cisplatin-resistant peritoneal ovarian metastases model. Overall, our findings provide the basis for using off-the-shelf allogeneic cell-based delivery platforms for oncolytic viruses, thus providing a more efficient delivery alternative compared with the free virus administration approach.

5.
Mol Ther Oncolytics ; 12: 79-92, 2019 Mar 29.
Article in English | MEDLINE | ID: mdl-30719498

ABSTRACT

Oncolytic virotherapy is a promising approach for treating recurrent and/or drug-resistant ovarian cancer. However, its successful application in the clinic has been hampered by rapid immune-mediated clearance or neutralization of the virus, which reduces viral access to tumor foci. To overcome this barrier, patient-derived mesenchymal stem cells have been used to deliver virus to tumors, but variability associated with autologous cell isolations prevents this approach from being broadly clinically applicable. Here, we demonstrate the ability of an allogeneic, clonal neural stem cell (NSC) line (HB1.F3.CD21) to protect oncolytic viral cargo from neutralizing antibodies within patient ascites fluid and to deliver it to tumors within preclinical peritoneal ovarian metastases models. The viral payload used is a conditionally replication-competent adenovirus driven by the survivin promoter (CRAd-S-pk7). Because the protein survivin is highly expressed in ovarian cancer, but not in normal differentiated cells, viral replication should occur selectively in ovarian tumor cells. We found this viral agent was effective against cisplatin-resistant ovarian tumors and could be used as an adjunct treatment with cisplatin to decrease tumor burden without increasing toxicity. Collectively, our data suggest NSC-delivered CRAd-S-pk7 virotherapy holds promise for improving clinical outcome, reducing toxicities, and improving quality of life for patients with advanced ovarian cancer.

6.
Stem Cells Transl Med ; 7(10): 740-747, 2018 10.
Article in English | MEDLINE | ID: mdl-30133188

ABSTRACT

Cancer is one of the leading causes of morbidity and mortality worldwide, with 1,688,780 new cancer cases and 600,920 cancer deaths projected to occur in 2017 in the U.S. alone. Conventional cancer treatments including surgical, chemo-, and radiation therapies can be effective, but are often limited by tumor invasion, off-target toxicities, and acquired resistance. To improve clinical outcomes and decrease toxic side effects, more targeted, tumor-specific therapies are being developed. Delivering anticancer payloads using tumor-tropic cells can greatly increase therapeutic distribution to tumor sites, while sparing non-tumor tissues therefore minimizing toxic side effects. Neural stem cells (NSCs) are tumor-tropic cells that can pass through normal organs quickly, localize to invasive and metastatic tumor foci throughout the body, and cross the blood-brain barrier to reach tumors in the brain. This review focuses on the potential use of NSCs as vehicles to deliver various anticancer payloads selectively to tumor sites. The use of NSCs in cancer treatment has been studied most extensively in the brain, but the findings are applicable to other metastatic solid tumors, which will be described in this review. Strategies include NSC-mediated enzyme/prodrug gene therapy, oncolytic virotherapy, and delivery of antibodies, nanoparticles, and extracellular vesicles containing oligonucleotides. Preclinical discovery and translational studies, as well as early clinical trials, will be discussed. Stem Cells Translational Medicine 2018;7:740-747.


Subject(s)
Neoplasms/therapy , Neural Stem Cells/transplantation , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/therapeutic use , Humans , Nanoparticles/chemistry , Nanoparticles/therapeutic use , Neoplasms/drug therapy , Neoplasms/pathology , Neural Stem Cells/chemistry , Neural Stem Cells/cytology , Oncolytic Virotherapy , Phototherapy , Prodrugs/chemistry , Prodrugs/therapeutic use , TNF-Related Apoptosis-Inducing Ligand/chemistry , TNF-Related Apoptosis-Inducing Ligand/therapeutic use
7.
Stem Cells Int ; 2018: 7047496, 2018.
Article in English | MEDLINE | ID: mdl-30026762

ABSTRACT

Tumor-tropic neural stem cells (NSCs) can be engineered to localize gene therapies to invasive brain tumors. However, like other stem cell-based therapies, survival of therapeutic NSCs after transplantation is currently suboptimal. One approach to prolonging cell survival is to transiently overexpress an antiapoptotic protein within the cells prior to transplantation. Here, we investigate the utility and safety of this approach using a clinically tested, v-myc immortalized, human NSC line engineered to contain the suicide gene, cytosine deaminase (CD-NSCs). We demonstrate that both adenoviral- and minicircle-driven expression of the antiapoptotic protein Bcl-2 can partially rescue CD-NSCs from transplant-associated insults. We further demonstrate that the improved CD-NSC survival afforded by transient Bcl-2 overexpression results in decreased tumor burden in an orthotopic xenograft glioma mouse model following administrations of intracerebral CD-NSCs and systemic prodrug. Importantly, no evidence of CD-NSC transformation was observed upon transient overexpression of Bcl-2. This research highlights a critical need to develop clinically relevant strategies to improve survival of therapeutic stem cell posttransplantation. We demonstrate for the first time in this disease setting that improving CD-NSC survival using Bcl-2 overexpression can significantly improve therapeutic outcomes.

8.
Adv Drug Deliv Rev ; 118: 35-51, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28916493

ABSTRACT

Cell-directed gene therapy is a promising new frontier for the field of targeted cancer therapies. Here we discuss the current pre-clinical and clinical use of cell-mediated enzyme prodrug therapy (EPT) directed against solid tumors and avenues for further development. We also discuss some of the challenges encountered upon translating these therapies to clinical trials. Upon sufficient development, cell-mediated enzyme prodrug therapy has the potential to maximize the distribution of therapeutic enzymes within the tumor environment, localizing conversion of prodrug to active drug at the tumor sites thereby decreasing off-target toxicities. New combinatorial possibilities are also promising. For example, when combined with viral gene-delivery vehicles, this may result in new hybrid vehicles that attain heretofore unmatched levels of therapeutic gene expression within the tumor.


Subject(s)
Neoplasms/drug therapy , Prodrugs/therapeutic use , Animals , Gene Transfer Techniques , Genetic Therapy/methods , Humans , Tumor Microenvironment/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL