Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Breast Cancer ; 24(1): 53-64, 2024 01.
Article in English | MEDLINE | ID: mdl-37926662

ABSTRACT

INTRODUCTION: Immunohistochemistry (IHC) is crucial for breast cancer diagnosis, classification, and individualized treatment. IHC is used to measure the levels of expression of hormone receptors (estrogen and progesterone receptors), human epidermal growth factor receptor 2 (HER2), and other biomarkers, which are used to make treatment decisions and predict how well a patient will do. The evaluation of the breast cancer score on IHC slides, taking into account structural and morphological features as well as a scarcity of relevant data, is one of the most important issues in the IHC debate. Several recent studies have utilized machine learning and deep learning techniques to resolve these issues. MATERIALS AND METHODS: This paper introduces a new approach for addressing the issue based on supervised deep learning. A GAN-based model is proposed for generating high-quality HER2 images and identifying and classifying HER2 levels. Using transfer learning methodologies, the original and generated images were evaluated. RESULTS AND CONCLUSION: All of the models have been trained and evaluated using publicly accessible and private data sets, respectively. The InceptionV3 and InceptionResNetV2 models achieved a high accuracy of 93% with the combined generated and original images used for training and testing, demonstrating the exceptional quality of the details in the synthesized images.


Subject(s)
Breast Neoplasms , Humans , Female , Breast Neoplasms/diagnosis , Breast Neoplasms/metabolism , Biomarkers, Tumor/metabolism , Receptors, Progesterone/metabolism , Estrogens , Machine Learning
2.
Biomolecules ; 12(12)2022 12 16.
Article in English | MEDLINE | ID: mdl-36551316

ABSTRACT

Corneal diseases are the most common eye disorders. Deep learning techniques are used to perform automated diagnoses of cornea. Deep learning networks require large-scale annotated datasets, which is conceded as a weakness of deep learning. In this work, a method for synthesizing medical images using conditional generative adversarial networks (CGANs), is presented. It also illustrates how produced medical images may be utilized to enrich medical data, improve clinical decisions, and boost the performance of the conventional neural network (CNN) for medical image diagnosis. The study includes using corneal topography captured using a Pentacam device from patients with corneal diseases. The dataset contained 3448 different corneal images. Furthermore, it shows how an unbalanced dataset affects the performance of classifiers, where the data are balanced using the resampling approach. Finally, the results obtained from CNN networks trained on the balanced dataset are compared to those obtained from CNN networks trained on the imbalanced dataset. For performance, the system estimated the diagnosis accuracy, precision, and F1-score metrics. Lastly, some generated images were shown to an expert for evaluation and to see how well experts could identify the type of image and its condition. The expert recognized the image as useful for medical diagnosis and for determining the severity class according to the shape and values, by generating images based on real cases that could be used as new different stages of illness between healthy and unhealthy patients.


Subject(s)
Corneal Diseases , Image Processing, Computer-Assisted , Humans , Image Processing, Computer-Assisted/methods , Neural Networks, Computer , Cornea/diagnostic imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...