Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; 63(21): e202400743, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38556463

ABSTRACT

Terpene synthases (TPSs) catalyze the first step in the formation of terpenoids, which comprise the largest class of natural products in nature. TPSs employ a family of universal natural substrates, composed of isoprenoid units bound to a diphosphate moiety. The intricate structures generated by TPSs are the result of substrate binding and folding in the active site, enzyme-controlled carbocation reaction cascades, and final reaction quenching. A key unaddressed question in class I TPSs is the asymmetric nature of the diphosphate-(Mg2+)3 cluster, which forms a critical part of the active site. In this asymmetric ion cluster, two diphosphate oxygen atoms protrude into the active site pocket. The substrate hydrocarbon tail, which is eventually molded into terpenes, can bind to either of these oxygen atoms, yet to which is unknown. Herein, we employ structural, bioinformatics, and EnzyDock docking tools to address this enigma. We bring initial data suggesting that this difference is rooted in evolutionary differences between TPSs. We hypothesize that this alteration in binding, and subsequent chemistry, is due to TPSs originating from plants or microorganisms. We further suggest that this difference can cast light on the frequent observation that the chiral products or intermediates of plant and bacterial terpene synthases represent opposite enantiomers.


Subject(s)
Alkyl and Aryl Transferases , Computational Biology , Alkyl and Aryl Transferases/metabolism , Alkyl and Aryl Transferases/chemistry , Plants/metabolism , Plants/enzymology , Substrate Specificity , Terpenes/metabolism , Terpenes/chemistry , Catalytic Domain , Bacteria/enzymology
2.
ACS Omega ; 9(7): 7393-7412, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38405524

ABSTRACT

Understanding enzyme mechanisms is essential for unraveling the complex molecular machinery of life. In this review, we survey the field of computational enzymology, highlighting key principles governing enzyme mechanisms and discussing ongoing challenges and promising advances. Over the years, computer simulations have become indispensable in the study of enzyme mechanisms, with the integration of experimental and computational exploration now established as a holistic approach to gain deep insights into enzymatic catalysis. Numerous studies have demonstrated the power of computer simulations in characterizing reaction pathways, transition states, substrate selectivity, product distribution, and dynamic conformational changes for various enzymes. Nevertheless, significant challenges remain in investigating the mechanisms of complex multistep reactions, large-scale conformational changes, and allosteric regulation. Beyond mechanistic studies, computational enzyme modeling has emerged as an essential tool for computer-aided enzyme design and the rational discovery of covalent drugs for targeted therapies. Overall, enzyme design/engineering and covalent drug development can greatly benefit from our understanding of the detailed mechanisms of enzymes, such as protein dynamics, entropy contributions, and allostery, as revealed by computational studies. Such a convergence of different research approaches is expected to continue, creating synergies in enzyme research. This review, by outlining the ever-expanding field of enzyme research, aims to provide guidance for future research directions and facilitate new developments in this important and evolving field.

3.
ACS Omega ; 9(1): 1298-1309, 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38222530

ABSTRACT

Understanding the physical underpinnings and geometry of molecular clusters is of great importance in many fields, ranging from studying the beginning of the universe to the formation of atmospheric particles. To this end, several approaches have been suggested, yet identifying the most stable cluster geometry (i.e., global potential energy minimum) remains a challenge, especially for highly symmetric clusters. Here, we suggest a new funneled Monte Carlo-based simulated annealing (SA) approach, which includes two key steps: generation of symmetrical clusters and classification of the clusters according to their geometry using machine learning (MCSA-ML). We demonstrate the merits of the MCSA-ML method in comparison to other approaches on several Lennard-Jones (LJ) clusters and four molecular clusters-Ser8(Cl-)2, H+(H2O)6, Ag+(CO2)8, and Bet4Cl-. For the latter of these clusters, the correct structure is unknown, and hence, we compare the experimental and simulated fragmentation patterns, and the fragmentation of the proposed global minimum matches experiments closely. Additionally, based on the fragmentation of the predicted betaine cluster, we were able to identify hitherto unknown neutral fragmentation channels. In comparison to results obtained with other methods, we demonstrated a superior ability of MCSA-ML to predict clusters with high symmetry and similar abilities to predict clusters with asymmetrical structures.

4.
Beilstein J Org Chem ; 18: 972-978, 2022.
Article in English | MEDLINE | ID: mdl-35965858

ABSTRACT

Terpene synthases are responsible for the biosynthesis of terpenes, the largest family of natural products. Hydropyrene synthase generates hydropyrene and hydropyrenol as its main products along with two byproducts, isoelisabethatrienes A and B. Fascinatingly, a single active site mutation (M75L) diverts the product distribution towards isoelisabethatrienes A and B. In the current work, we study the competing pathways leading to these products using quantum chemical calculations in the gas phase. We show that there is a great thermodynamic preference for hydropyrene and hydropyrenol formation, and hence most likely in the synthesis of the isoelisabethatriene products kinetic control is at play.

5.
J Am Chem Soc ; 143(32): 12552-12559, 2021 Aug 18.
Article in English | MEDLINE | ID: mdl-34357752

ABSTRACT

Despite the continuous progress in the research and development of Ti3C2Tx (MXene) electrodes for high-power batteries and supercapacitor applications, the role of the anions in the electrochemical energy storage and their ability to intercalate between the MXene sheets upon application of positive voltage have not been clarified. A decade after the discovery of MXenes, the information about the possibility of anion insertion into the restacked MXene electrode is still being questioned. Since the positive potential stability range in diluted aqueous electrolytes is severely limited by anodic oxidation of the Ti, the possibility of anion insertion was evaluated in concentrated aqueous electrolyte solutions and aprotic electrolytes as well. To address this issue, we have conducted in situ gravimetric electrochemical quartz crystal microbalance with dissipation monitoring (EQCM-D) measurements in highly concentrated LiCl and LiBr electrolytes, which enable a significant extension of the operation range of the MXene electrodes toward positive potentials. Also, halogens are among the smallest anions and should be easier to intercalate between MXene layers, in comparison to multiatomic anions. On the basis of mass change variations in the positive voltage range and complementary density functional theory calculations, it was demonstrated that insertion of anionic species into MXene, within the range of potentials of interest for capacitive energy storage, is not likely to occur. This can be explained by the strong negative charge on Ti3C2Tx sheets terminated by functional groups.

6.
J Chem Inf Model ; 61(6): 2957-2966, 2021 06 28.
Article in English | MEDLINE | ID: mdl-34047191

ABSTRACT

The coronavirus SARS-CoV-2 main protease, Mpro, is conserved among coronaviruses with no human homolog and has therefore attracted significant attention as an enzyme drug target for COVID-19. The number of studies targeting Mpro for in silico screening has grown rapidly, and it would be of great interest to know in advance how well docking methods can reproduce the correct ligand binding modes and rank these correctly. Clearly, current attempts at designing drugs targeting Mpro with the aid of computational docking would benefit from a priori knowledge of the ability of docking programs to predict correct binding modes and score these correctly. In the current work, we tested the ability of several leading docking programs, namely, Glide, DOCK, AutoDock, AutoDock Vina, FRED, and EnzyDock, to correctly identify and score the binding mode of Mpro ligands in 193 crystal structures. None of the codes were able to correctly identify the crystal structure binding mode (lowest energy pose with root-mean-square deviation < 2 Å) in more than 26% of the cases for noncovalently bound ligands (Glide: top performer), whereas for covalently bound ligands the top score was 45% (EnzyDock). These results suggest that one should perform in silico campaigns of Mpro with care and that more comprehensive strategies including ligand free energy perturbation might be necessary in conjunction with virtual screening and docking.


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents , Benchmarking , Humans , Molecular Docking Simulation , Peptide Hydrolases , Protease Inhibitors
7.
Chemistry ; 27(13): 4447-4453, 2021 Mar 01.
Article in English | MEDLINE | ID: mdl-33346916

ABSTRACT

The sizes of available self-assembled hydrogen-bond-based supramolecular capsules and cages are rather limited. The largest systems have volumes of approximately 1400-2300 Å3 . Herein, we report a large, hexameric cage based on intermolecular amide-amide dimerization. The unusual structure with openings, reminiscent of covalently linked cages, is held together by 24 hydrogen bonds. With a diameter of 2.3 nm and a cavity volume of ∼2800 Å3 , the assembly is larger than any previously known capsule/cage structure relying exclusively on hydrogen bonds. The self-assembly process in chlorinated, organic solvents was found to be strongly concentration dependent, with the monomeric form prevailing at low concentrations. Additionally, the formation of host-guest complexes with fullerenes (C60 and C70 ) was observed.

8.
J Am Chem Soc ; 142(12): 5894-5900, 2020 03 25.
Article in English | MEDLINE | ID: mdl-32134641

ABSTRACT

Terpenes constitute one of the most structurally varied classes of natural products. A wide range of these structures are produced in nature by type I terpene cyclase enzymes from one single substrate. However, such reactivity has proven difficult to reproduce in solution with man-made systems. Herein we report the shortest synthesis of the tricyclic sesquiterpene presilphiperfolan-1ß-ol to date, utilizing the supramolecular resorcinarene capsule as catalyst for the key step. This synthetic approach also allows access to unnatural derivatives of the natural product, which would not be accessible through the biosynthetic machinery. Additionally, this study provides useful insight into the biosynthesis of the presilphiperfolanol natural products, including the first experimental evidence consistent with the proposed biosynthetic connection between caryophyllene and the presilphiperfolanols.

9.
Beilstein J Org Chem ; 16: 50-59, 2020.
Article in English | MEDLINE | ID: mdl-31976016

ABSTRACT

Terpene cyclases are responsible for the initial cyclization cascade in the multistep synthesis of a large number of terpenes. CotB2 is a diterpene cyclase from Streptomyces melanosporofaciens, which catalyzes the formation of cycloocta-9-en-7-ol, a precursor to the next-generation anti-inflammatory drug cyclooctatin. In this work, we present evidence for the significant role of the active site's residues in CotB2 on the reaction energetics using quantum mechanical calculations in an active site cluster model. The results revealed the significant effect of the active site residues on the relative electronic energy of the intermediates and transition state structures with respect to gas phase data. A detailed understanding of the role of the enzyme environment on the CotB2 reaction cascade can provide important information towards a biosynthetic strategy for cyclooctatin and the biomanufacturing of related terpene structures.

10.
RSC Adv ; 10(49): 29175-29180, 2020 Aug 05.
Article in English | MEDLINE | ID: mdl-35521130

ABSTRACT

Lithium transition metal olivine phosphates are well known Li-ion battery cathode materials, but these materials can also be used as electrocatalyst. Recent experimental studies showed that olivine phosphates with mixed alkali metals (Li and Na) and mixed transition metals (Ni and Fe) provide better electrocatalytic activity compared to single alkali and transition metal alternatives. In the current work, we analyzed the role of alkali metals, transition metals and vacancies on the reactivity of a series of olivine phosphates with different stoichiometries using first principles calculations. To this end, we investigated the adsorption of water at the surface of these materials. We found that water binds preferably at Ni surface sites for materials devoid of alkali ion vacancies. We further found correlation between the calculated adsorption energy with experimentally measured overpotentials for a series of olivine phosphates. Additionally, we found correlation between the adsorption energy of the systems with the total charge polarization of surface and adsorbate. To explain the computed trends, we analyzed the occupancies of the partial density of states of the Ni and Fe 3d states and Bader atomic charges.

11.
J Chem Theory Comput ; 15(9): 5116-5134, 2019 Sep 10.
Article in English | MEDLINE | ID: mdl-31386808

ABSTRACT

Enzymes play a pivotal role in all biological systems. These biomachines are the most effective catalysts known, dramatically enhancing the rate of reactions by more than 10 orders of magnitude relative to the uncatalyzed reactions in solution. Predicting the correct, mechanistically appropriate binding modes for substrate and product, as well as all reaction intermediates and transition states, along a reaction pathway is immensely challenging and remains an unsolved problem. In the present work, we developed an effective methodology for identifying probable binding modes of multiple ligand states along a reaction coordinate in an enzyme active site. The program is called EnzyDock and is a CHARMM-based multistate consensus docking program that includes a series of protocols to predict the chemically relevant orientation of substrate, reaction intermediates, transition states, product, and inhibitors. EnzyDock is based on simulated annealing molecular dynamics and Monte Carlo sampling and allows ligand, as well as enzyme side-chain and backbone flexibility. The program can employ many user-defined constraints and restraints and classical force field potentials, as well as a range of hybrid quantum mechanics-molecular mechanics potentials. Herein, we apply EnzyDock to several different kinds of problems. First, we study two terpene synthase reactions, namely bornyl diphosphate synthase and the bacterial diterpene synthase CotB2. Second, we use EnzyDock to predict reaction coordinate states in a pair of Diels-Alder reactions in the enzymes spirotetronate AbyU and LepI. Third, we study a couple of racemases: the cofactor-dependent serine racemase and the cofactor independent proline racemase. Finally, we study several cases of covalent docking involving the Michael addition reaction. For all systems we predict binding modes that are consistent with available experimental observations, as well as with theoretical modeling studies from the literature. EnzyDock provides a platform for generating mechanistic insight into enzyme reactions, useful and reliable starting points for in-depth multiscale modeling projects, and rational design of noncovalent and covalent enzyme inhibitors.


Subject(s)
Racemases and Epimerases/chemistry , Ligands , Models, Molecular , Molecular Structure , Monte Carlo Method , Protein Engineering , Quantum Theory , Racemases and Epimerases/metabolism
12.
J Am Chem Soc ; 141(15): 6234-6246, 2019 04 17.
Article in English | MEDLINE | ID: mdl-30907083

ABSTRACT

Large-scale production of natural products, such as terpenes, presents a significant scientific and technological challenge. One promising approach to tackle this problem is chemical synthesis inside nanocapsules, although enzyme-like control of such chemistry has not yet been achieved. In order to better understand the complex chemistry inside nanocapsules, we design a multiscale nanoreactor simulation approach. The nanoreactor simulation protocol consists of hybrid quantum mechanics-molecular mechanics-based high temperature Langevin molecular dynamics simulations. Using this approach we model the tail-to-head formation of monoterpenes inside a resorcin[4]arene-based capsule (capsule I). We provide a rationale for the experimentally observed kinetics of monoterpene product formation and product distribution using capsule I, and we explain why additional stable monoterpenes, like camphene, are not observed. On the basis of the in-capsule I simulations, and mechanistic insights, we propose that feeding the capsule with pinene can yield camphene, and this proposal is verified experimentally. This suggests that the capsule may direct the dynamic reaction cascades by virtue of π-cation interactions.

13.
ACS Catal ; 9(12): 11199-11206, 2019 Dec 06.
Article in English | MEDLINE | ID: mdl-33996196

ABSTRACT

Thermal motions of enzymes have been invoked to explain the temperature dependence of kinetic isotope effects (KIE) in enzyme-catalyzed hydride transfers. Formate dehydrogenase (FDH) from Candida boidinii exhibits a temperature independent KIE that becomes temperature dependent upon mutation of hydrophobic residues in the active site. Ternary complexes of FDH that mimic the transition state structure allow investigation of how these mutations influence active-site dynamics. A combination of X-ray crystallography, two-dimensional infrared (2D IR) spectroscopy, and molecular dynamic simulations characterize the structure and dynamics of the active site. FDH exhibits oscillatory frequency fluctuations on the picosecond timescale, and the amplitude of these fluctuations correlates with the temperature dependence of the KIE. Both the kinetic and dynamic phenomena can be reproduced computationally. These results provide experimental evidence for a connection between the temperature dependence of KIEs and motions of the active site in an enzyme-catalyzed reaction consistent with activated tunneling models of the hydride transfer reaction.

14.
ACS Appl Mater Interfaces ; 10(35): 29608-29621, 2018 Sep 05.
Article in English | MEDLINE | ID: mdl-30095889

ABSTRACT

Doping LiNi0.5Co0.2Mn0.3O2 (NCM523) cathode material by small amount of Mo6+ ions, around 1 mol %, affects pronouncedly its structure, surface properties, and electronic and electrochemical behavior. Cathodes comprising Mo6+-doped NCM523 exhibited in Li cells higher specific capacities, higher rate capabilities, lower capacity fading, and lower charge-transfer resistance that relates to a more stable electrode/solution interface due to doping. This, in turn, is ascribed to the fact that the Mo6+ ions tend to concentrate more at the surface, as a result of a synthesis that always includes a necessary calcination, high-temperature stage. This phenomenon of the Mo dopant segregation at the surface in NCM523 material was discovered in the present work for the first time. It appears that Mo doping reduces the reactivity of the Ni-rich NCM cathode materials toward the standard electrolyte solutions of Li-ion batteries. Using density functional theory (DFT) calculations, we showed that Mo6+ ions are preferably incorporated at Ni sites and that the doping increases the amount of Ni2+ ions at the expense of Ni3+ ions, due to charge compensation, in accord with X-ray absorption fine structure (XAFS) spectroscopy measurements. Furthermore, DFT calculations predicted Ni-O bond length distributions in good agreement with the XAFS results, supporting a model of partial substitution of Ni sites by molybdenum.

15.
Purinergic Signal ; 14(3): 271-284, 2018 09.
Article in English | MEDLINE | ID: mdl-30019187

ABSTRACT

Extracellular nucleotides can regulate the production/drainage of the aqueous humor via activation of P2 receptors, thus affecting the intraocular pressure (IOP). We evaluated 5-OMe-UDP(α-B), 1A, a potent P2Y6-receptor agonist, for reducing IOP and treating glaucoma. Cell viability in the presence of 1A was measured using [3-(4, 5-dimethyl-thiazol-2-yl) 2, 5-diphenyl-tetrazolium bromide] (MTT) assay in rabbit NPE ciliary non-pigmented and corneal epithelial cells, human retinoblastoma, and liver Huh7 cells. The effect of 1A on IOP was determined in acute glaucomatous rabbit hyaluronate model and phenol-induced chronic glaucomatous rabbit model. The origin of activity of 1A was investigated by generation of a homology model of hP2Y6-R and docking studies. 1A did not exert cytotoxic effects up to 100 mM vs. trusopt and timolol in MTT assay in ocular and liver cells. In normotensive rabbits, 100 µM 1A vs. xalatan, trusopt, and pilocarpine reduced IOP by 45 vs. 20-30%, respectively. In the phenol animal model, 1A (100 µM) showed reduction of IOP by 40 and 20%, following early and late administration, respectively. Docking results suggest that the high activity and selectivity of 1A is due to intramolecular interaction between Pα-BH3 and C5-OMe which positions 1A in a most favorable site inside the receptor. P2Y6-receptor agonist 1A effectively and safely reduces IOP in normotense, acute, and chronic glaucomatous rabbits, and hence may be suggested as a novel approach for the treatment of glaucoma.


Subject(s)
Glaucoma , Intraocular Pressure/drug effects , Purinergic P2Y Receptor Agonists/pharmacology , Receptors, Purinergic P2/drug effects , Animals , Humans , Rabbits , Uridine Diphosphate/chemistry , Uridine Diphosphate/pharmacology
16.
ACS Catal ; 8(2): 1371-1375, 2018.
Article in English | MEDLINE | ID: mdl-29805842

ABSTRACT

Wang et al. recently reported an in silico study of the trichodiene synthase (TDS) conversion of farnesyl diphosphate (FPP) to trichodiene (TD) (Wang et al., ACS Catal. 2017, 7, 5841-5846). Although the methods and level of theory used in that work are nearly identical to our own recent work on this system (Dixit et al., ACS Catal. 2017, 7, 812-818), Wang et al. reach rather different conclusions. The authors claimed to obtain a "very credible" mechanism for the biosynthesis of TD and optimized the optimal folding mode of FPP in the 1,6-ring closure in TDS. However, the folding mode of the FPP substrate that was presented contradicts well-established NMR and mass spectrometry data. Moreover, the authors make numerous incorrect statements regarding our earlier work.

17.
Chem Commun (Camb) ; 53(96): 12942-12945, 2017 Nov 30.
Article in English | MEDLINE | ID: mdl-29155903

ABSTRACT

Four ß-pyrrole-substituted cobalt(iii) corroles were studied as electrocatalysts for the oxygen reduction reaction. The results disclose high dependence of the corrole's performance on its substituents, but once adsorbed on a high surface area carbon, this effect vanishes, resulting in a better catalytic performance than most well-defined molecular electrocatalysts for this reaction.

18.
ACS Catal ; 7(1): 812-818, 2017 Jan 06.
Article in English | MEDLINE | ID: mdl-29399379

ABSTRACT

Terpene cyclases catalyze the highly stereospecific molding of polyisoprenes into terpenes, which are precursors to most known natural compounds. The isoprenoids are formed via intricate chemical cascades employing rich, yet highly erratic, carbocation chemistry. It is currently not well understood how these biocatalysts achieve chemical control. Here, we illustrate the catalytic control exerted by trichodiene synthase, and in particular, we discover two features that could be general catalytic tools adopted by other terpenoid cyclases. First, to avoid formation of byproducts, the enzyme raises the energy of bisabolyl carbocation, which is a general mechanistic branching point in many sesquiterpene cyclases, resulting in an essentially concerted cyclization cascade. Second, we identify a sulfur-carbocation dative bonding interaction that anchors the bisabolyl cation in a reactive conformation, avoiding tumbling and premature deprotonation. Specifically, Met73 acts as a chameleon, shifting from an initial sulfur-π interaction in the Michaelis complex to a sulfur-carbocation complex during catalysis.

19.
Biochemistry ; 55(19): 2760-71, 2016 05 17.
Article in English | MEDLINE | ID: mdl-27100912

ABSTRACT

The structure of formate dehydrogenase from Candida boidinii (CbFDH) is of both academic and practical interests. First, this enzyme represents a unique model system for studies on the role of protein dynamics in catalysis, but so far these studies have been limited by the availability of structural information. Second, CbFDH and its mutants can be used in various industrial applications (e.g., CO2 fixation or nicotinamide recycling systems), and the lack of structural information has been a limiting factor in commercial development. Here, we report the crystallization and structural determination of both holo- and apo-CbFDH. The free-energy barrier for the catalyzed reaction was computed and indicates that this structure indeed represents a catalytically competent form of the enzyme. Complementing kinetic examinations demonstrate that the recombinant CbFDH has a well-organized reactive state. Finally, a fortuitous observation has been made: the apoenzyme crystal was obtained under cocrystallization conditions with a saturating concentration of both the cofactor (NAD(+)) and inhibitor (azide), which has a nanomolar dissociation constant. It was found that the fraction of the apoenzyme present in the solution is less than 1.7 × 10(-7) (i.e., the solution is 99.9999% holoenzyme). This is an extreme case where the crystal structure represents an insignificant fraction of the enzyme in solution, and a mechanism rationalizing this phenomenon is presented.


Subject(s)
Candida/enzymology , Formate Dehydrogenases/chemistry , Fungal Proteins/chemistry , Apoenzymes/antagonists & inhibitors , Apoenzymes/chemistry , Apoenzymes/genetics , Apoenzymes/metabolism , Candida/genetics , Formate Dehydrogenases/antagonists & inhibitors , Formate Dehydrogenases/genetics , Formate Dehydrogenases/metabolism , Fungal Proteins/antagonists & inhibitors , Fungal Proteins/genetics , Fungal Proteins/metabolism , Kinetics , NAD/chemistry , NAD/metabolism , Sodium Azide/chemistry
20.
Angew Chem Int Ed Engl ; 54(47): 14080-4, 2015 Nov 16.
Article in English | MEDLINE | ID: mdl-26429211

ABSTRACT

The future of affordable fuel cells strongly relies on the design of earth-abundant (non-platinum) catalysts for the electrochemical oxygen reduction reaction (ORR). However, the bottleneck in the overall process occurs therein. We have examined herein trivalent Mn, Fe, Co, Ni, and Cu complexes of ß-pyrrole-brominated corrole as ORR catalysts. The adsorption of these complexes on a high-surface-area carbon powder (BP2000) created a unique composite material, used for electrochemical measurements in acidic aqueous solutions. These experiments disclosed a clear dependence of the catalytic activity on the metal center of the complexes, in the order of Co>Fe>Ni>Mn>Cu. The best catalytic performance was obtained for the Co(III) corrole, whose onset potential was as positive as 0.81 V versus the reversible hydrogen electrode (RHE). Insight into the properties of these systems was gained by spectroscopic and computational characterization of the reduced and oxidized forms of the metallocorroles.

SELECTION OF CITATIONS
SEARCH DETAIL
...