Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-36786318

ABSTRACT

Since the outbreak of SARS-CoV-2, a multitude of strategies have been explored for the means of protection and shielding against virus particles: filtration equipment (PPE) has been widely used in daily life. In this work, we explore another approach in the form of deactivating coronavirus particles through selective binding onto the surface of metal-organic frameworks (MOFs) to further the fight against the transmission of respiratory viruses. MOFs are attractive materials in this regard, as their rich pore and surface chemistry can easily be modified on demand. The surfaces of three MOFs, UiO-66(Zr), UiO-66-NH2(Zr), and UiO-66-NO2(Zr), have been functionalized with repurposed antiviral agents, namely, folic acid, nystatin, and tenofovir, to enable specific interactions with the external spike protein of the SARS virus. Protein binding studies revealed that this surface modification significantly improved the binding affinity toward glycosylated and non-glycosylated proteins for all three MOFs. Additionally, the pores for the surface-functionalized MOFs can adsorb water, making them suitable for locally dehydrating microbial aerosols. Our findings highlight the immense potential of MOFs in deactivating respiratory coronaviruses to be better equipped to fight future pandemics.

2.
PLoS Pathog ; 19(2): e1011147, 2023 02.
Article in English | MEDLINE | ID: mdl-36780551

ABSTRACT

Host-specific plant pathogens must coordinate their life cycles with the availability of a host plant. Although this is frequently achieved through a response to specific chemical cues derived from the host plant, little is known about the molecular basis of the response to such cues and how these are used to trigger activation of the life cycle. In host-specific plant-parasitic cyst nematodes, unhatched juvenile nematodes lie dormant in the eggshell until chemical cues from a suitable host plant are detected and the hatching process is initiated. The molecular mechanisms by which hatch is linked to the presence of these chemical cues is unknown. We have identified a novel annexin-like protein that is localised to the eggshell of the potato cyst nematode Globodera rostochiensis. This annexin is unique in having a short peptide insertion that structural modelling predicts is present in one of the calcium-binding sites of this protein. Host-induced gene silencing of the annexin impacts the ability of the nematode to regulate and control permeability of the eggshell. We show that in the presence of the chemicals that induce hatching annexin lipid binding capabilities change, providing the first molecular link between a nematode eggshell protein and host-derived cues. This work demonstrates how a protein from a large family has been recruited to play a critical role in the perception of the presence of a host and provides a new potential route for control of cyst nematodes that impact global food production.


Subject(s)
Parasites , Tylenchoidea , Animals , Annexins , Egg Shell , Plants , Life Cycle Stages
3.
Antimicrob Agents Chemother ; 65(7): e0189220, 2021 06 17.
Article in English | MEDLINE | ID: mdl-33875438

ABSTRACT

Neglected tropical diseases caused by kinetoplastid parasites (Trypanosoma brucei, Trypanosoma cruzi, and Leishmania spp.) place a significant health and economic burden on developing nations worldwide. Current therapies are largely outdated, inadequate, and face mounting drug resistance from the causative parasites. Thus, there is an urgent need for drug discovery and development. Target-led drug discovery approaches have focused on the identification of parasite enzymes catalyzing essential biochemical processes, which significantly differ from equivalent proteins found in humans, thereby providing potentially exploitable therapeutic windows. One such target is ribose 5-phosphate isomerase B (RpiB), an enzyme involved in the nonoxidative branch of the pentose phosphate pathway, which catalyzes the interconversion of d-ribose 5-phosphate and d-ribulose 5-phosphate. Although protozoan RpiB has been the focus of numerous targeted studies, compounds capable of selectively inhibiting this parasite enzyme have not been identified. Here, we present the results of a fragment library screening against Leishmania infantum RpiB (LiRpiB), performed using thermal shift analysis. Hit fragments were shown to be effective inhibitors of LiRpiB in activity assays, and several fragments were capable of selectively inhibiting parasite growth in vitro. These results support the identification of LiRpiB as a validated therapeutic target. The X-ray crystal structure of apo LiRpiB was also solved, permitting docking studies to assess how hit fragments might interact with LiRpiB to inhibit its activity. Overall, this work will guide structure-based development of LiRpiB inhibitors as antileishmanial agents.


Subject(s)
Leishmania infantum , Pharmaceutical Preparations , Amino Acid Sequence , Humans , Ribosemonophosphates
4.
RSC Adv ; 10(63): 38328-38343, 2020 Oct 15.
Article in English | MEDLINE | ID: mdl-35517538

ABSTRACT

Four groups, thirty-five compounds in total, of novel 1,2,3-triazole analogues of imidazo-[1,2-a]-pyridine-3-carboxamides were designed and synthesized using substituted pyridine, propargyl bromide, 2-azidoethyl 4-methyl benzenesulfonate and substituted acetylenes. These compounds were characterized using 1H NMR, 13C NMR, LCMS and elemental analyses and a crystal structure was obtained for one of the significantly active compounds, 8f. All the synthesized and characterized compounds were screened in vitro for antileishmanial and antitrypanosomal activity against Leishmania major and Trypanosoma brucei parasites, respectively. Among the tested analogues, five compounds (8d, 8f, 8j, 10b and 10d) exhibited significant antileishmanial activity while three compounds (10b, 11a and 11b) showed substantial activity against T. brucei parasite. In silico ADME prediction studies depicted that the essential compounds obeyed Lipinski's rule of five. The predicted in silico toxicity profile suggested that the tested compounds would be non-toxic, which was confirmed experimentally by the lack of cytotoxicity against HeLa cells. Finally, a molecular docking study was also performed, for 10d the most active antileishmanial compound, to study its putative binding pattern at the active site of the selected leishmanial trypanothione reductase target.

5.
Molecules ; 24(15)2019 Jul 29.
Article in English | MEDLINE | ID: mdl-31362457

ABSTRACT

: It has long been established that mitochondrial dysfunction in Alzheimer's disease (AD) patients can trigger pathological changes in cell metabolism by altering metabolic enzymes such as the mitochondrial 17ß-hydroxysteroid dehydrogenase type 10 (17ß-HSD10), also known as amyloid-binding alcohol dehydrogenase (ABAD). We and others have shown that frentizole and riluzole derivatives can inhibit 17ß-HSD10 and that this inhibition is beneficial and holds therapeutic merit for the treatment of AD. Here we evaluate several novel series based on benzothiazolylurea scaffold evaluating key structural and activity relationships required for the inhibition of 17ß-HSD10. Results show that the most promising of these compounds have markedly increased potency on our previously published inhibitors, with the most promising exhibiting advantageous features like low cytotoxicity and target engagement in living cells.


Subject(s)
17-Hydroxysteroid Dehydrogenases/antagonists & inhibitors , 17-Hydroxysteroid Dehydrogenases/chemistry , Benzothiazoles/chemistry , Urea/chemistry , Alzheimer Disease/drug therapy , Amyloid beta-Peptides/metabolism , Cell Line , Dose-Response Relationship, Drug , Drug Design , Humans , Mitochondria/metabolism , Molecular Structure , Structure-Activity Relationship
6.
PLoS Negl Trop Dis ; 12(1): e0006180, 2018 01.
Article in English | MEDLINE | ID: mdl-29357372

ABSTRACT

Chagas disease remains one of the most neglected diseases in the world despite being the most important parasitic disease in Latin America. The characteristic chronic manifestation of chagasic cardiomyopathy is the region's leading cause of heart-related illness, causing significant mortality and morbidity. Due to the limited available therapeutic options, new drugs are urgently needed to control the disease. Sirtuins, also called Silent information regulator 2 (Sir2) proteins have long been suggested as interesting targets to treat different diseases, including parasitic infections. Recent studies on Trypanosoma cruzi sirtuins have hinted at the possibility to exploit these enzymes as a possible drug targets. In the present work, the T. cruzi Sir2 related protein 1 (TcSir2rp1) is genetically validated as a drug target and biochemically characterized for its NAD+-dependent deacetylase activity and its inhibition by the classic sirtuin inhibitor nicotinamide, as well as by bisnaphthalimidopropyl (BNIP) derivatives, a class of parasite sirtuin inhibitors. BNIPs ability to inhibit TcSir2rp1, and anti-parasitic activity against T. cruzi amastigotes in vitro were investigated. The compound BNIP Spermidine (BNIPSpd) (9), was found to be the most potent inhibitor of TcSir2rp1. Moreover, this compound showed altered trypanocidal activity against TcSir2rp1 overexpressing epimastigotes and anti-parasitic activity similar to the reference drug benznidazole against the medically important amastigotes, while having the highest selectivity index amongst the compounds tested. Unfortunately, BNIPSpd failed to treat a mouse model of Chagas disease, possibly due to its pharmacokinetic profile. Medicinal chemistry modifications of the compound, as well as alternative formulations may improve activity and pharmacokinetics in the future. Additionally, an initial TcSIR2rp1 model in complex with p53 peptide substrate was obtained from low resolution X-ray data (3.5 Å) to gain insight into the potential specificity of the interaction with the BNIP compounds. In conclusion, the search for TcSir2rp1 specific inhibitors may represent a valuable strategy for drug discovery against T. cruzi.


Subject(s)
Antiprotozoal Agents/metabolism , Chagas Disease/parasitology , Enzyme Inhibitors/metabolism , Protozoan Proteins/antagonists & inhibitors , Trypanosoma cruzi/drug effects , Animals , Chagas Disease/drug therapy , Disease Models, Animal , Mice , Niacinamide/metabolism , Quinolones/metabolism , Spermine/analogs & derivatives , Spermine/metabolism , Treatment Outcome
7.
Eukaryot Cell ; 14(6): 616-24, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25888554

ABSTRACT

myo-Inositol is a building block for all inositol-containing phospholipids in eukaryotes. It can be synthesized de novo from glucose-6-phosphate in the cytosol and endoplasmic reticulum. Alternatively, it can be taken up from the environment via Na(+)- or H(+)-linked myo-inositol transporters. While Na(+)-coupled myo-inositol transporters are found exclusively in the plasma membrane, H(+)-linked myo-inositol transporters are detected in intracellular organelles. In Trypanosoma brucei, the causative agent of human African sleeping sickness, myo-inositol metabolism is compartmentalized. De novo-synthesized myo-inositol is used for glycosylphosphatidylinositol production in the endoplasmic reticulum, whereas the myo-inositol taken up from the environment is used for bulk phosphatidylinositol synthesis in the Golgi complex. We now provide evidence that the Golgi complex-localized T. brucei H(+)-linked myo-inositol transporter (TbHMIT) is essential in bloodstream-form T. brucei. Downregulation of TbHMIT expression by RNA interference blocked phosphatidylinositol production and inhibited growth of parasites in culture. Characterization of the transporter in a heterologous expression system demonstrated a remarkable selectivity of TbHMIT for myo-inositol. It tolerates only a single modification on the inositol ring, such as the removal of a hydroxyl group or the inversion of stereochemistry at a single hydroxyl group relative to myo-inositol.


Subject(s)
Golgi Apparatus/metabolism , Inositol/metabolism , Protozoan Proteins/metabolism , Symporters/metabolism , Trypanosoma brucei brucei/metabolism , Animals , Phosphatidylinositols/biosynthesis , Protozoan Proteins/genetics , Symporters/genetics , Trypanosoma brucei brucei/growth & development , Xenopus
8.
Molecules ; 17(10): 12206-24, 2012 Oct 18.
Article in English | MEDLINE | ID: mdl-23079492

ABSTRACT

The search for potent and selective sirtuin inhibitors continues as chemical tools of this type are of use in helping to assign the function of this interesting class of deacetylases. Here we describe SAR studies starting from the unselective sirtuin inhibitor tenovin-6. These studies identify a sub-micromolar inhibitor that has increased selectivity for SIRT2 over SIRT1 compared to tenovin-6. In addition, a ¹H-NMR-based method is developed and used to validate further this class of sirtuin inhibitors. A thermal shift analysis of SIRT2 in the presence of tenovin-6, -43, a control tenovin and the known SIRT2 inhibitor AGK2 is also presented.


Subject(s)
Benzamides/chemistry , Benzamides/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Sirtuin 2/antagonists & inhibitors , Acetylation , Benzamides/chemical synthesis , Enzyme Activation/drug effects , Enzyme Inhibitors/chemical synthesis , Histones/metabolism , Humans , Nuclear Magnetic Resonance, Biomolecular , Reproducibility of Results , Sirtuin 2/metabolism
9.
ChemMedChem ; 7(9): 1623-34, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22865834

ABSTRACT

Acivicin analogues with an increased affinity for CTP synthetase (CTPS) were designed as potential new trypanocidal agents. The inhibitory activity against CTPS can be improved by increasing molecular complexity, by inserting groups able to establish additional interactions with the binding pocket of the enzyme. This strategy has been pursued with the synthesis of α-amino-substituted analogues of Acivicin and N1-substituted pyrazoline derivatives. In general, there is direct correlation between the enzymatic activity and the in vitro anti-trypanosomal efficacy of the derivatives studied here. However, this cannot be taken as a general rule, as other important factors may play a role, notably the ability of uptake/diffusion of the molecules into the trypanosomes.


Subject(s)
Carbon-Nitrogen Ligases/antagonists & inhibitors , Isoxazoles/chemistry , Isoxazoles/pharmacology , Trypanocidal Agents/chemistry , Trypanocidal Agents/pharmacology , Trypanosoma brucei brucei/drug effects , Carbon-Nitrogen Ligases/metabolism , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , HeLa Cells , Humans , Molecular Docking Simulation , Pyrazoles/chemistry , Pyrazoles/pharmacology , Trypanosoma brucei brucei/enzymology , Trypanosomiasis, African/drug therapy
10.
Mol Biol Int ; 2011: 389364, 2011.
Article in English | MEDLINE | ID: mdl-22091402

ABSTRACT

Inositol-3-phosphate synthase (INO1) has previously been genetically validated as a drug target against Trypanosoma brucei, the causative agent of African sleeping sickness. Chemical intervention of this essential enzyme could lead to new therapeutic agents. Unfortunately, no potent inhibitors of INO1 from any organism have been reported, so a screen for potential novel inhibitors of T. brucei INO1was undertaken. Detection of inhibition of T. brucei INO1 is problematic due to the nature of the reaction. Direct detection requires differentiation between glucose-6-phosphate and inositol-3-phosphate. Coupled enzyme assays could give false positives as potentially they could inhibit the coupling enzyme. Thus, an alternative approach of differential scanning fluorimetry to identify compounds that interact with T. brucei INO1 was employed to screen ~670 compounds from the MayBridge Rule of 3 Fragment Library. This approach identified 38 compounds, which significantly altered the T(m) of TbINO1. Four compounds showed trypanocidal activity with ED50s in the tens of micromolar range, with 2 having a selectivity index in excess of 250. The trypanocidal and general cytotoxicity activities of all of the compounds in the library are also reported, with the best having ED50S of ~20 µM against T. brucei.

11.
ChemMedChem ; 6(2): 329-33, 2011 Feb 07.
Article in English | MEDLINE | ID: mdl-21275056

ABSTRACT

The first convenient synthesis of enantiomerically pure (αS,5S)-α-amino-3-bromo-4,5-dihydroisoxazol-5-yl acetic acid (3-bromoacivicin) is described. We demonstrate that 3-bromoacivicin is a CTP synthetase inhibitor three times as potent as its 3-chloro analogue, the natural antibiotic acivicin. Because CTP synthetase was suggested to be a potential drug target in African trypanosomes, the in vitro/in vivo antitrypanosomal activity of 3-bromoacivicin was assessed in comparison with acivicin. Beyond expectation, we observed a 12-fold enhancement in the in vitro antitrypanosomal activity, while toxicity against mammalian cells remained unaffected. Despite its good in vitro activity and selectivity, 3-bromoacivicin proved to be trypanostatic and failed to completely eradicate the infection when tested in vivo at its maximum tolerable dose.


Subject(s)
Carbon-Nitrogen Ligases/antagonists & inhibitors , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacology , Isoxazoles/chemical synthesis , Isoxazoles/pharmacology , Drug Evaluation, Preclinical , In Vitro Techniques
12.
J Mol Biol ; 365(1): 146-59, 2007 Jan 05.
Article in English | MEDLINE | ID: mdl-17046787

ABSTRACT

The striking feature of carbohydrates is their constitutional, conformational and configurational diversity. Biology has harnessed this diversity and manipulates carbohydrate residues in a variety of ways, one of which is epimerization. RmlC catalyzes the epimerization of the C3' and C5' positions of dTDP-6-deoxy-D-xylo-4-hexulose, forming dTDP-6-deoxy-L-lyxo-4-hexulose. RmlC is the third enzyme of the rhamnose pathway, and represents a validated anti-bacterial drug target. Although several structures of the enzyme have been reported, the mechanism and the nature of the intermediates have remained obscure. Despite its relatively small size (22 kDa), RmlC catalyzes four stereospecific proton transfers and the substrate undergoes a major conformational change during the course of the transformation. Here we report the structure of RmlC from several organisms in complex with product and product mimics. We have probed site-directed mutants by assay and by deuterium exchange. The combination of structural and biochemical data has allowed us to assign key residues and identify the conformation of the carbohydrate during turnover. Clear knowledge of the chemical structure of RmlC reaction intermediates may offer new opportunities for rational drug design.


Subject(s)
Carbohydrate Epimerases/chemistry , Nucleoside Diphosphate Sugars/metabolism , Thymine Nucleotides/metabolism , Bacterial Proteins/chemistry , Carbohydrate Conformation , Carbohydrate Epimerases/isolation & purification , Carbohydrate Epimerases/metabolism , Crystallography, X-Ray , Models, Molecular , Nucleoside Diphosphate Sugars/chemistry , Pseudomonas aeruginosa/enzymology , Recombinant Proteins/chemistry , Recombinant Proteins/isolation & purification , Rhamnose/biosynthesis , Thymine Nucleotides/chemistry
13.
Nucleic Acids Res ; 34(7): 1959-73, 2006.
Article in English | MEDLINE | ID: mdl-16614446

ABSTRACT

Six diverse prokaryotic and five eukaryotic genomes were compared to deduce whether the protein synthesis termination signal has common determinants within and across both kingdoms. Four of the six prokaryotic and all of the eukaryotic genomes investigated demonstrated a similar pattern of nucleotide bias both 5' and 3' of the stop codon. A preferred core signal of 4 nt was evident, encompassing the stop codon and the following nucleotide. Codons decoded by hyper-modified tRNAs were over-represented in the region 5' to the stop codon in genes from both kingdoms. The origin of the 3' bias was more variable particularly among the prokaryotic organisms. In both kingdoms, genes with the highest expression index exhibited a strong bias but genes with the lowest expression showed none. Absence of bias in parasitic prokaryotes may reflect an absence of pressure to evolve more efficient translation. Experiments were undertaken to determine if a correlation existed between bias in signal abundance and termination efficiency. In Escherichia coli signal abundance correlated with termination efficiency for UAA and UGA stop codons, but not in mammalian cells. Termination signals that were highly inefficient could be made more efficient by increasing the concentration of the cognate decoding release factor.


Subject(s)
Codon, Terminator , Eukaryotic Cells/metabolism , Peptide Chain Termination, Translational , Prokaryotic Cells/metabolism , Animals , COS Cells , Chlorocebus aethiops , Computational Biology , Genomics , Humans , Nucleotides/analysis , Peptide Termination Factors/metabolism , RNA, Transfer/metabolism
14.
J Am Chem Soc ; 127(51): 18309-20, 2005 Dec 28.
Article in English | MEDLINE | ID: mdl-16366586

ABSTRACT

GDP-mannose-3',5'-epimerase (GME) from Arabidopsis thaliana catalyzes the epimerization of both the 3' and 5' positions of GDP-alpha-D-mannose to yield GDP-beta-L-galactose. Production of the C5' epimer of GDP-alpha-D-mannose, GDP-beta-L-gulose, has also been reported. The reaction occurs as part of vitamin C biosynthesis in plants. We have determined structures of complexes of GME with GDP-alpha-D-mannose, GDP-beta-L-galactose, and a mixture of GDP-beta-L-gulose with GDP-beta-L-4-keto-gulose to resolutions varying from 2.0 to 1.4 A. The enzyme has the classical extended short-chain dehydratase/reductase (SDR) fold. We have confirmed that GME establishes an equilibrium between two products, GDP-beta-L-galactose and GDP-beta-L-gulose. The reaction proceeds by C4' oxidation of GDP-alpha-D-mannose followed by epimerization of the C5' position to give GDP-beta-L-4-keto-gulose. This intermediate is either reduced to give GDP-beta-L-gulose or the C3' position is epimerized to give GDP-beta-L-4-keto-galactose, then C4' is reduced to GDP-beta-L-galactose. The combination of oxidation, epimerization, and reduction in a single active site is unusual. Structural analysis coupled to site-directed mutagenesis suggests C145 and K217 as the acid/base pair responsible for both epimerizations. On the basis of the structure of the GDP-beta-L-gulose/GDP-beta-L-4-keto-gulose co-complex, we predict that a ring flip occurs during the first epimerization and that a boat intermediate is likely for the second epimerization. Comparison of GME with other SDR enzymes known to abstract a protein alpha to the keto function of a carbohydrate identifies key common features.


Subject(s)
Carbohydrate Epimerases/chemistry , Carbohydrate Epimerases/metabolism , Guanosine Diphosphate Mannose/chemistry , Guanosine Diphosphate Mannose/metabolism , Guanosine Diphosphate Sugars/chemistry , Guanosine Diphosphate Sugars/metabolism , Amino Acid Sequence , Arabidopsis/enzymology , Binding Sites , Models, Molecular , Molecular Sequence Data , Mutagenesis, Site-Directed , NAD/chemistry , NAD/metabolism , Protein Conformation , Structure-Activity Relationship
15.
J Biol Chem ; 279(31): 32684-91, 2004 Jul 30.
Article in English | MEDLINE | ID: mdl-15159413

ABSTRACT

Vancomycin, the last line of defense antibiotic, depends upon the attachment of the carbohydrate vancosamine to an aglycone skeleton for antibacterial activity. Vancomycin is a naturally occurring secondary metabolite that can be produced by bacterial fermentation. To combat emerging resistance, it has been proposed to genetically engineer bacteria to produce analogues of vancomycin. This requires a detailed understanding of the biochemical steps in the synthesis of vancomycin. Here we report the 1.4 A structure and biochemical characterization of EvaD, an RmlC-like protein that is required for the C-5' epimerization during synthesis of dTDP-epivancosamine. EvaD, although clearly belonging to the RmlC class of enzymes, displays very low activity in the archetypal RmlC reaction (double epimerization of dTDP-6-deoxy-4-keto-D-glucose at C-3' and C-5'). The high resolution structure of EvaD compared with the structures of authentic RmlC enzymes indicates that a subtle change in the enzyme active site repositions a key catalytic Tyr residue. A mutant designed to re-establish the normal position of the Tyr increases the RmlC-like activity of EvaD.


Subject(s)
Anti-Bacterial Agents/pharmacology , Carbohydrate Epimerases/chemistry , Tyrosine/chemistry , Vancomycin/pharmacology , Amino Acid Sequence , Carbohydrate Sequence , Carbohydrates , Catalysis , Circular Dichroism , Crystallography, X-Ray , Kinetics , Mass Spectrometry , Models, Chemical , Models, Molecular , Molecular Sequence Data , Mutagenesis , Mutagenesis, Site-Directed , Protein Conformation , Protein Structure, Secondary , Salmonella enterica/metabolism , Sequence Homology, Amino Acid , Structure-Activity Relationship , Substrate Specificity , Vancomycin/chemistry
16.
Article in English | MEDLINE | ID: mdl-14510074

ABSTRACT

Molecular mimicry was a concept that was revived as we understood more about the ligands that bound to the active center of the ribosome, and the characteristics of the active center itself. It has been particularly useful for the termination phase of protein synthesis, because for many years this major process seemed not only to be out of step) with the initiation and elongation phases but also there were no common features of the process between eubacteria and eukaryotes. As the facts that supported molecular mimicry emerged, it was seen that the protein factors that facilitated polypeptide chain release when the decoding of an mRNA was complete had common features with the ligands involved in the other phases. Moreover, now common features and mechanisms began to emerge between the eubacterial and eukaryotic RFs and suddenly there seemed to be remarkable synergy between the external ligands and commonality in at least some features of the mechanistic prnciples. Almost 10 years after molecular mimicry took hold as a framework concept, we can now see that this idea is probably too simple. For example, structural mimicry can be apparent if there are extensive conformational changes either in the ribosome active center or in the ligand itself or, most likely, both. Early indications are that the bacterial RF may indeed undergo extensive conformational changes from its solution structure to achieve this accommodation. Thus, as important if not more important than structural and functional mimicry among the ligands, might be their accomodation of a common single active center made up of at least three parts to carry out a complex series of reactions. One part of the ribosomal active center is committed to decoding, a second is committed to the chemistry of putting the protein together and releasing it, and a third part, perhaps residing in the subdomains, is committed to binding ligands so that they can perform their respective single or multiple functions. It might be more accurate to regard the decoding RF as the cuckoo taking over the nest that was crafted and honed through evolution by another, the tRNA. A somewhat ungainly RF, perhaps bigger in dimensions than the tRNA, is able, nevertheless, like the cuckoo, to maneuvre into the nest. Perhaps it pushes the nest a little out of shape, but is still able to use the site for its own functions of stop signal decoding and for facilitating the release of the polypeptide. The term molecular mimicry has been dominant in the literature for a period of important advances in the understanding of protein synthesis. When the first structures of the ribosome appeared, the concept survived and was seen to be valid still. Now, we are at the stage of understanding the more detailed molecular interactions between ligands and the rRNA in particular, and how subtle changes in localized spatial orientations of atoms occur within these interactions. The simplicity of the original concept of mimicry will inevitably be blurred by this more detailed analysis. Nevertheless, it has provided a significant set of principles that allowed development of experimental programs to enhance our understanding of the dynamic events at this remarkable active site at the interface between the two subunits of this fascinating cell organelle, the ribosome.


Subject(s)
Codon, Terminator , Protein Biosynthesis , RNA, Transfer/chemistry , Ribosomes/physiology , Amino Acid Sequence , Anticodon/chemistry , Bacterial Physiological Phenomena , Binding Sites , Models, Molecular , Molecular Sequence Data , Protein Structure, Secondary , Ribosomes/chemistry
17.
Structure ; 11(6): 715-23, 2003 Jun.
Article in English | MEDLINE | ID: mdl-12791259

ABSTRACT

Nature achieves the epimerization of carbohydrates by a variety of chemical routes. One common route is that performed by the class of enzyme defined by dTDP-6-deoxy-D-xylo-4-hexulose 3,5-epimerase (RmlC) from the rhamnose pathway. Earlier studies failed to identify the key residues in catalysis. We report the 1.3 A structure of RmlC from Streptococcus suis type 2 and its complexes with dTDP-D-glucose and dTDP-D-xylose. The streptococcal RmlC enzymes belong to a separate subgroup, sharing only 25% identity with RmlC from other bacteria, yet the S. suis enzyme has similar kinetic properties and structure to other RmlC enzymes. Structure, sequence alignment, and mutational analysis have now allowed reliable identification of the catalytic residues and their roles.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Carbohydrate Epimerases/chemistry , Carbohydrate Epimerases/metabolism , Streptococcus suis/enzymology , Bacterial Proteins/genetics , Binding Sites , Carbohydrate Epimerases/genetics , Crystallography, X-Ray , Ligands , Models, Molecular , Protein Binding , Protein Structure, Tertiary
18.
FEBS Lett ; 514(1): 84-9, 2002 Mar 06.
Article in English | MEDLINE | ID: mdl-11904187

ABSTRACT

In two Escherichia coli genomes, laboratory strain K-12 and pathological strain O157:H7, tandem termination codons as a group are slightly over-represented as termination signals. Individually however, they span the range of representations, over, as expected, or under, in one or both of the strains. In vivo, tandem termination codons do not make more efficient signals. The second codon can act as a backstop where readthrough of the first has occurred, but not at the expected efficiency. UGAUGA remains an enigma, highly over-represented, but with the second UGA a relatively inefficient back up stop codon.


Subject(s)
Codon, Terminator , Escherichia coli/genetics , Protein Biosynthesis , Tandem Repeat Sequences
SELECTION OF CITATIONS
SEARCH DETAIL
...