Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 53
Filter
2.
Am J Hum Genet ; 110(8): 1436-1443, 2023 08 03.
Article in English | MEDLINE | ID: mdl-37490907

ABSTRACT

Hyperferritinemia is a frequent finding in several conditions, both genetic and acquired. We previously studied eleven healthy subjects from eight different families presenting with unexplained hyperferritinemia. Their findings suggested the existence of an autosomal-recessive disorder. We carried out whole-exome sequencing to detect the genetic cause of hyperferritinemia. Immunohistochemistry and flow cytometry assays were performed on liver biopsies and monocyte-macrophages to confirm the pathogenic role of the identified candidate variants. Through a combined approach of whole-exome sequencing and homozygosity mapping, we found bi-allelic STAB1 variants in ten subjects from seven families. STAB1 encodes the multifunctional scavenger receptor stabilin-1. Immunohistochemistry and flow cytometry analyses showed absent or markedly reduced stabilin-1 in liver samples, monocytes, and monocyte-derived macrophages. Our findings show a strong association between otherwise unexplained hyperferritinemia and bi-allelic STAB1 mutations suggesting the existence of another genetic cause of hyperferritinemia without iron overload and an unexpected function of stabilin-1 in ferritin metabolism.


Subject(s)
Hyperferritinemia , Iron Overload , Humans , Iron Overload/genetics , Iron Overload/diagnosis , Ferritins/genetics , Macrophages , Alleles
3.
Genet Med ; 25(10): 100927, 2023 10.
Article in English | MEDLINE | ID: mdl-37422718

ABSTRACT

PURPOSE: The SF3B splicing complex is composed of SF3B1-6 and PHF5A. We report a developmental disorder caused by de novo variants in PHF5A. METHODS: Clinical, genomic, and functional studies using subject-derived fibroblasts and a heterologous cellular system were performed. RESULTS: We studied 9 subjects with congenital malformations, including preauricular tags and hypospadias, growth abnormalities, and developmental delay who had de novo heterozygous PHF5A variants, including 4 loss-of-function (LOF), 3 missense, 1 splice, and 1 start-loss variant. In subject-derived fibroblasts with PHF5A LOF variants, wild-type and variant PHF5A mRNAs had a 1:1 ratio, and PHF5A mRNA levels were normal. Transcriptome sequencing revealed alternative promoter use and downregulated genes involved in cell-cycle regulation. Subject and control fibroblasts had similar amounts of PHF5A with the predicted wild-type molecular weight and of SF3B1-3 and SF3B6. SF3B complex formation was unaffected in 2 subject cell lines. CONCLUSION: Our data suggest the existence of feedback mechanisms in fibroblasts with PHF5A LOF variants to maintain normal levels of SF3B components. These compensatory mechanisms in subject fibroblasts with PHF5A or SF3B4 LOF variants suggest disturbed autoregulation of mutated splicing factor genes in specific cell types, that is, neural crest cells, during embryonic development rather than haploinsufficiency as pathomechanism.


Subject(s)
Craniofacial Abnormalities , Hypospadias , Male , Humans , Hypospadias/genetics , RNA Splicing Factors/genetics , RNA Splicing , Transcription Factors/genetics , Transcription Factors/metabolism , Trans-Activators/genetics , RNA-Binding Proteins/genetics
4.
Hum Genet ; 142(6): 785-808, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37079061

ABSTRACT

Deleterious variants in collagen genes are the most common cause of hereditary connective tissue disorders (HCTD). Adaptations of the American College of Medical Genetics and Genomics/Association for Molecular Pathology (ACMG/AMP) criteria are still lacking. A multidisciplinary team was set up for developing specifications of the ACMG/AMP criteria for COL1A1, COL1A2, COL2A1, COL3A1, COL5A1, COL5A2, COL11A1, COL11A2 and COL12A1, associated with various forms of HCTD featuring joint hypermobility, which is becoming one of the most common reasons of referral for molecular testing in this field. Such specifications were validated against 209 variants, and resulted effective for classifying as pathogenic and likely pathogenic null alleles without downgrading of the PVS1 level of strength and recurrent Glycine substitutions. Adaptations of selected criteria reduced uncertainties on private Glycine substitutions, intronic variants predicted to affect the splicing, and null alleles with a downgraded PVS1 level of strength. Segregation and multigene panel sequencing data mitigated uncertainties on non-Glycine substitutions by the attribution of one or more benignity criteria. These specifications may improve the clinical utility of molecular testing in HCTD by reducing the number of variants with neutral/conflicting interpretations. Close interactions between laboratory and clinicians are crucial to estimate the a priori utility of molecular test and to improve medical reports.


Subject(s)
Genetic Variation , Joint Instability , Humans , United States , Genetic Testing/methods , Joint Instability/diagnosis , Joint Instability/genetics , Sequence Analysis, DNA/methods
5.
Int J Mol Sci ; 24(4)2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36835439

ABSTRACT

Two adult siblings born to first-cousin parents presented a clinical phenotype reminiscent of Rothmund-Thomson syndrome (RTS), implying fragile hair, absent eyelashes/eyebrows, bilateral cataracts, mottled pigmentation, dental decay, hypogonadism, and osteoporosis. As the clinical suspicion was not supported by the sequencing of RECQL4, the RTS2-causative gene, whole exome sequencing was applied and disclosed the homozygous variants c.83G>A (p.Gly28Asp) and c.2624A>C (p.Glu875Ala) in the nucleoporin 98 (NUP98) gene. Though both variants affect highly conserved amino acids, the c.83G>A looked more intriguing due to its higher pathogenicity score and location of the replaced amino acid between phenylalanine-glycine (FG) repeats within the first NUP98 intrinsically disordered region. Molecular modeling studies of the mutated NUP98 FG domain evidenced a dispersion of the intramolecular cohesion elements and a more elongated conformational state compared to the wild type. This different dynamic behavior may affect the NUP98 functions as the minor plasticity of the mutated FG domain undermines its role as a multi-docking station for RNA and proteins, and the impaired folding can lead to the weakening or the loss of specific interactions. The clinical overlap of NUP98-mutated and RTS2/RTS1 patients, accounted by converging dysregulated gene networks, supports this first-described constitutional NUP98 disorder, expanding the well-known role of NUP98 in cancer.


Subject(s)
Germ-Line Mutation , Nuclear Pore Complex Proteins , Rothmund-Thomson Syndrome , Humans , Nuclear Pore Complex Proteins/chemistry , Nuclear Pore Complex Proteins/genetics , Rothmund-Thomson Syndrome/genetics , Siblings , Male , Female , Protein Conformation
6.
Eur J Hum Genet ; 31(4): 474-478, 2023 04.
Article in English | MEDLINE | ID: mdl-36529819

ABSTRACT

Constitutional heterozygous mutations in CHEK2 gene have been associated with hereditary cancer risk. To date, only a few homozygous CHEK2 mutations have been reported in families with cancer susceptibility. Here, we report two unrelated individuals with a personal and familial cancer history in whom biallelic CHEK2 alterations were identified. The first case resulted homozygous for the CHEK2 c.793-1 G > A (p.Asp265Thrfs*10) variant, and the second one was found to be compound heterozygous for the c.1100delC (p.Thr367Metfs*15) and the c.1312 G > T (p.Asp438Tyr) variants. Multiple cytogenetic anomalies were demonstrated on peripheral lymphocytes of both patients. A literature revision showed that a single other CHEK2 homozygous variant was previously associated to a constitutional randomly occurring multi-translocation karyotype from peripheral blood in humans. We hypothesize that, at least some biallelic CHEK2 mutations might be associated with a novel disorder, further expanding the group of chromosome instability syndromes. Additional studies on larger cohorts are needed to confirm if chromosomal instability could represent a marker for CHEK2 constitutionally mutated recessive genotypes, and to investigate the cancer risk and the occurrence of other anomalies typically observed in chromosome instability syndromes.


Subject(s)
Breast Neoplasms , Protein Serine-Threonine Kinases , Humans , Female , Protein Serine-Threonine Kinases/genetics , Genetic Predisposition to Disease , Checkpoint Kinase 2/genetics , Mutation , Genotype , Chromosomal Instability
7.
Genes (Basel) ; 13(12)2022 12 14.
Article in English | MEDLINE | ID: mdl-36553625

ABSTRACT

In 2018, a new clinical subtype, caused by biallelic variants in the AEBP1 gene, encoding the ACLP protein, was added to the current nosological classification of the Ehlers-Danlos Syndromes (EDS). This new phenotype, provisionally termed EDS classical-like type 2 (clEDS2), has not yet been fully characterized, as only nine cases have been reported to date. Here we describe a patient, homozygous for a novel AEBP1 pathogenic variant (NM_001129.5 c.2123_2124delTG (p.Val708AlafsTer5)), whose phenotype is reminiscent of classical EDS but also includes previously unreported multiple congenital malformations. Furthermore, we briefly summarize the current principal clinical manifestations of clEDS2 and the molecular evidence surrounding the role of AEBP1 in the context of extracellular matrix homeostasis and connective tissue development. Although a different coexisting etiology for the multiple congenital malformations of our patient cannot be formally excluded, the emerging role of ACLP in TGF-ß and WNT pathways may explain their occurrence and the phenotypical variability of clEDS2.


Subject(s)
Ehlers-Danlos Syndrome , Humans , Mutation , Ehlers-Danlos Syndrome/pathology , Extracellular Matrix/genetics , Phenotype , Homozygote , Carboxypeptidases/genetics , Repressor Proteins/genetics
8.
J Mol Neurosci ; 71(12): 2474-2481, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34227036

ABSTRACT

X-linked intellectual disability can be diagnosed in about 10-12% of intellectually disabled males. In the past, mutations affecting the PAK3 gene (p21 protein-activated kinase 3, MIM#300142) have been associated with a non-syndromic form of X-linked intellectual disability, which has to date been identified in a limited number of families.Since this neurodevelopmental disorder mostly afflicts males, descriptions of symptomatic female carriers are quite rare.We describe a female patient with neurodevelopmental delay and a novel PAK3 variant. Interestingly, she manifests craniofacial anomalies, including microcephaly, representing the second reported microcephalic female but the first for whom a detailed clinical description is available. She also displays other uncommon clinical findings, which we illustrate.Moreover, a comprehensive clinical and molecular review of all to date published patients has been made. This study contributes to further delineate the PAK3-related phenotype, which can be considered a non-syndromic X-linked intellectual disability, with seemingly recurrent craniofacial abnormalities.


Subject(s)
Developmental Disabilities/genetics , Intellectual Disability/genetics , Microcephaly/genetics , Phenotype , p21-Activated Kinases/genetics , Child, Preschool , Developmental Disabilities/pathology , Female , Humans , Intellectual Disability/pathology , Microcephaly/pathology , Mutation , p21-Activated Kinases/metabolism
9.
Clin Genet ; 99(4): 540-546, 2021 04.
Article in English | MEDLINE | ID: mdl-33372278

ABSTRACT

Biallelic pathogenic variants in POC1A result in SOFT (Short-stature, Onychodysplasia, Facial-dysmorphism, and hypoTrichosis) and variant POC1A-related (vPOC1A) syndromes. The latter, nowadays described in only two unrelated subjects, is associated with a restricted spectrum of variants falling in exon 10, which is naturally skipped in a specific POC1A mRNA. The synthesis of an amount of a POC1A isoform from this transcript in individuals with vPOC1A syndrome has been believed as the likely explanation for such a genotype-phenotype correlation. Here, we illustrate the clinical and molecular findings in a woman who resulted to be compound heterozygous for a recurrent frameshift variant in exon 10 and a novel variant in exon 9 of POC1A. Phenotypic characteristics of this woman included severe hyperinsulinemic dyslipidemia, acanthosis nigricans, moderate growth restriction, and dysmorphisms. These manifestations overlap the clinical features of the two previously published individuals with vPOC1A syndrome. RT-PCR analysis on peripheral blood and subsequent sequencing of the obtained amplicons demonstrated a variety of POC1A alternative transcripts that resulted to be expressed in the proband, in the healthy mother, and in controls. We illustrate the possible consequences of the two POC1A identified variants in an attempt to explain pleiotropy in vPOC1A syndrome.


Subject(s)
Cell Cycle Proteins/genetics , Congenital Hyperinsulinism/genetics , Cytoskeletal Proteins/genetics , Dyslipidemias/genetics , Acanthosis Nigricans/genetics , Adult , Age of Onset , Cell Cycle Proteins/deficiency , Computer Simulation , Congenital Hyperinsulinism/drug therapy , Cytoskeletal Proteins/deficiency , DNA, Complementary/genetics , Dyslipidemias/drug therapy , Exons/genetics , Fatty Acids, Unsaturated/therapeutic use , Female , Frameshift Mutation , Heterozygote , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Insulin Resistance , Metformin/therapeutic use , Middle Aged , Pedigree , Phenotype , Plasmapheresis , Protein Isoforms/genetics , Syndrome , Transcription, Genetic
10.
Int J Mol Sci ; 21(24)2020 Dec 11.
Article in English | MEDLINE | ID: mdl-33322357

ABSTRACT

BACKGROUND: Cutaneous malignant melanoma (CMM) is one of the most common skin cancers worldwide. CMM pathogenesis involves genetic and environmental factors. Recent studies have led to the identification of new genes involved in CMM susceptibility: beyond CDKN2A and CDK4, BAP1, POT1, and MITF were recently identified as potential high-risk melanoma susceptibility genes. OBJECTIVE: This study is aimed to evaluate the genetic predisposition to CMM in patients from central Italy. METHODS: From 1998 to 2017, genetic testing was performed in 888 cases with multiple primary melanoma and/or familial melanoma. Genetic analyses included the sequencing CDKN2A, CDK4, BAP1, POT1, and MITF in 202 cases, and of only CDKN2A and CDK4 codon 24 in 686 patients. By the evaluation of the personal and familial history, patients were divided in two clinical categories: "low significance" and "high significance" cases. RESULTS: 128 patients (72% belonging to the "high significance" category, 28% belonging to the "low significance" category) were found to carry a DNA change defined as pathogenic, likely pathogenic, variant of unknown significance (VUS)-favoring pathogenic or VUS. CONCLUSIONS: It is important to verify the genetic predisposition in CMM patients for an early diagnosis of further melanomas and/or other tumors associated with the characterized genotype.


Subject(s)
Genetic Predisposition to Disease/genetics , Melanoma/genetics , Melanoma/metabolism , Adult , Aged , Cyclin-Dependent Kinase 4/genetics , Cyclin-Dependent Kinase Inhibitor p16/genetics , Female , Humans , Italy , Male , Microphthalmia-Associated Transcription Factor/genetics , Middle Aged , Retrospective Studies , Shelterin Complex , Telomere-Binding Proteins/genetics , Tumor Suppressor Proteins/genetics , Ubiquitin Thiolesterase/genetics
12.
Am J Med Genet A ; 182(7): 1791-1795, 2020 07.
Article in English | MEDLINE | ID: mdl-32359026

ABSTRACT

A rare developmental delay (DD)/intellectual disability (ID) syndrome with craniofacial dysmorphisms and autistic features, termed White-Sutton syndrome (WHSUS, MIM#614787), has been recently described, identifying truncating mutations in the chromatin regulator POGZ (KIAA0461, MIM#614787). We describe a further WHSUS patient harboring a novel nonsense de novo POGZ variant, which afflicts a protein domain with transposase activity less frequently impacted by mutational events (DDE domain). This patient displays additional physical and behavioral features, these latter mimicking Smith-Magenis syndrome (SMS, MIM#182290). Considering sleep-wake cycle anomalies and abnormal behavior manifested by this boy, we reinforced the clinical resemblance between WHSUS and SMS, being both chromatinopathies. In addition, using the DeepGestalt technology, we identified a different facial overlap between WHSUS patients with mutations in the DDE domain (Group 1) and individuals harboring variants in other protein domains/regions (Group 2). This report further delineates the clinical and molecular repertoire of the POGZ-related phenotype, adding a novel patient with uncommon clinical and behavioral features and provides the first computer-aided facial study of WHSUS patients.


Subject(s)
Developmental Disabilities/genetics , Intellectual Disability/genetics , Smith-Magenis Syndrome/genetics , Transposases/genetics , Child, Preschool , Codon, Nonsense/genetics , Craniofacial Abnormalities/diagnosis , Craniofacial Abnormalities/diagnostic imaging , Craniofacial Abnormalities/genetics , Craniofacial Abnormalities/physiopathology , Developmental Disabilities/diagnosis , Developmental Disabilities/diagnostic imaging , Developmental Disabilities/physiopathology , Exome/genetics , Female , Humans , Intellectual Disability/diagnosis , Intellectual Disability/diagnostic imaging , Intellectual Disability/physiopathology , Male , Mutation/genetics , Phenotype , Smith-Magenis Syndrome/diagnosis , Smith-Magenis Syndrome/diagnostic imaging , Smith-Magenis Syndrome/physiopathology
13.
Clin Genet ; 97(4): 672-674, 2020 04.
Article in English | MEDLINE | ID: mdl-31994175

ABSTRACT

We describe the second patient with the de novo p.Arg377Trp variant in ACTL6A (Actin-like 6A) (MIM#604958) and a phenotype reminiscent a disorder of the BRG1-associated factor (BAF) complex, including dysmorphic facies and acral malformations. So far, only three patients with ACTL6A variants and neurodevelopmental delay have been reported but the specific p.Arg377Trp mutation seems to correlate with a distinctive phenotype well-fitting a BAFopathy, which lacks in individuals carrying different mutations. This could suggest an emergent genotype-phenotype correlation among the ACTL6A-related phenotype.


Subject(s)
Abnormalities, Multiple/genetics , Actins/genetics , Chromosomal Proteins, Non-Histone/genetics , DNA-Binding Proteins/genetics , Hand Deformities, Congenital/genetics , Neurodevelopmental Disorders/genetics , Abnormalities, Multiple/pathology , Child , Hand Deformities, Congenital/pathology , Humans , Male , Micrognathism/pathology , Neurodevelopmental Disorders/pathology
14.
Genes (Basel) ; 10(10)2019 09 28.
Article in English | MEDLINE | ID: mdl-31569402

ABSTRACT

Loeys-Dietz syndrome (LDS) is a connective tissue disorder first described in 2005 featuring aortic/arterial aneurysms, dissections, and tortuosity associated with craniofacial, osteoarticular, musculoskeletal, and cutaneous manifestations. Heterozygous mutations in 6 genes (TGFBR1/2, TGFB2/3, SMAD2/3), encoding components of the TGF-ß pathway, cause LDS. Such genetic heterogeneity mirrors broad phenotypic variability with significant differences, especially in terms of the age of onset, penetrance, and severity of life-threatening vascular manifestations and multiorgan involvement, indicating the need to obtain genotype-to-phenotype correlations for personalized management and counseling. Herein, we report on a cohort of 34 LDS patients from 24 families all receiving a molecular diagnosis. Fifteen variants were novel, affecting the TGFBR1 (6), TGFBR2 (6), SMAD3 (2), and TGFB2 (1) genes. Clinical features were scored for each distinct gene and matched with literature data to strengthen genotype-phenotype correlations such as more severe vascular manifestations in TGFBR1/2-related LDS. Additional features included spontaneous pneumothorax in SMAD3-related LDS and cervical spine instability in TGFB2-related LDS. Our study broadens the clinical and molecular spectrum of LDS and indicates that a phenotypic continuum emerges as more patients are described, although genotype-phenotype correlations may still contribute to clinical management.


Subject(s)
Loeys-Dietz Syndrome/genetics , Adolescent , Adult , Child , Child, Preschool , Humans , Infant , Loeys-Dietz Syndrome/classification , Loeys-Dietz Syndrome/pathology , Middle Aged , Pedigree , Receptor, Transforming Growth Factor-beta Type I/genetics , Receptor, Transforming Growth Factor-beta Type II/genetics , Smad3 Protein/genetics , Transforming Growth Factor beta2/genetics
15.
J Hum Genet ; 64(8): 721-728, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31086247

ABSTRACT

Genetic syndromes are frequently associated with Intellectual Disability (ID), as well as craniofacial dysmorphisms. A group of ID syndromes with typical abnormal face related to chromatin remodeling defects, have been recognized, coining the term chromatinopathies. This is a molecular heterogeneous subset of congenital disorders caused by mutations of the various components of the Chromatin-Marking System (CMS), including modifiers of DNA and chromatin remodelers. We performed a phenotypic study on a sample of 120 individuals harboring variants in genes codifying for the histones enzymes, using the DeepGestalt technology. Three experiments (two multiclass comparison experiments and a frontal face-crop analysis) were conducted, analyzing respectively a total of 181 pediatric images in the first comparison experiment and 180 in the second, all individuals belonging predominantly to Caucasian population. The classification results were expressed in terms of the area under the curve (AUC) of the receiver-operating-characteristic curve (ROC). Significant values of AUC and low p-values were registered for all syndromes in the three experiments, in comparison with each other, with other ID syndromes characterized by recognizable craniofacial dysmorphisms and with unaffected controls. Final findings indicated that this group of diseases is characterized by distinctive dysmorphisms, which result pathognomonic. A correct interrogation and use of adequate informatics aids, could become a valid support for clinicians.


Subject(s)
Facies , Genetic Association Studies , Genetic Predisposition to Disease , Intellectual Disability/diagnosis , Intellectual Disability/genetics , Phenotype , Child , Child, Preschool , Cohort Studies , Diagnostic Imaging , Female , Genetic Association Studies/methods , Humans , Image Processing, Computer-Assisted , Male , ROC Curve
16.
Psychiatr Genet ; 29(3): 86-90, 2019 06.
Article in English | MEDLINE | ID: mdl-30724859

ABSTRACT

About one child in 68 is affected by the autism spectrum disorder (ASD), one of the most common neurodevelopmental disorders linked to intellectual disability, especially in males, intellectual disability being diagnosable in about 60-70% of autistic individuals. The biological bases of ASD are not yet fully known, but they are generally considered multifactorial, although many genes and genomic loci have been proposed to be possibly associated with this condition. In this report, we describe the case of a 14-year-old female Italian proband affected by ASD, carrying a novel ~ 270 kb interstitial microduplication, localized at the distal portion of the 4q13.1 region. The rearrangement was inherited from a mild symptomatic father and included a large part of the single EPHA5 gene, a receptor tyrosine kinase involved in the neural development, already indicated to be linked to ASD by previous Genome Wide Association Studies. This imbalance represents, to the best of our knowledge, the smallest duplication identified to date that only impacts the EPHA5 gene. We hypothesize that the duplication of this gene may alter EPHA5 expression and that this may impact the autistic phenotype of the patient.


Subject(s)
Autism Spectrum Disorder/genetics , Receptor, EphA5/genetics , Adolescent , Autistic Disorder/genetics , Comparative Genomic Hybridization , Female , Gene Duplication/genetics , Genome-Wide Association Study , Genomics , Humans , Intellectual Disability/genetics , Italy , Phenotype , Receptor, EphA5/physiology
18.
Eur J Paediatr Neurol ; 22(3): 552-557, 2018 May.
Article in English | MEDLINE | ID: mdl-29475819

ABSTRACT

A recent syndromic condition with craniofacial dysmorphisms, comprising congenital ocular defect and neurodevelopmental delay named Helsmoortel-Van der Aa Syndrome (HVDAS) (OMIM#615873), has been described and molecularly defined, identifying pathogenic mutations in the ADNP gene (OMIM#611386) as biological cause. We report on two children, displaying intellectual disability (ID) and peculiar congenital eyes anomalies, both carrying a de novo nonsense mutation in the ADNP gene. The review of present and literature reports, suggests that the diagnosis of HVDAS should be suspected in patients with ID accompanied by behavioral features in the Autism Spectrum Disorder and distinctive craniofacial phenotype. Among dysmorphisms due to malformation of the periorbital region, ptosis appears to be particularly recurrent in HVDAS. Furthermore, the present patients could support the inclusion of the HVDAS associated with specific mutations clustering within a small ADNP genomic region among clinical conditions reminiscent of the blepharophimosis/mental retardation syndromes (BMRS).


Subject(s)
Abnormalities, Multiple/genetics , Autistic Disorder/genetics , Craniofacial Abnormalities/genetics , Homeodomain Proteins/genetics , Intellectual Disability/genetics , Nerve Tissue Proteins/genetics , Child, Preschool , Disabled Children , Female , Humans , Infant , Male , Mutation , Phenotype , Syndrome
19.
Biochim Biophys Acta Mol Basis Dis ; 1864(2): 464-470, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29154924

ABSTRACT

Mutations of SLC40A1 encoding ferroportin (Fpn), the unique cellular iron exporter, severely affect iron homeostasis causing type 4 hereditary hemochromatosis, an autosomal dominant iron overload condition with variable phenotypic manifestations. This disease can be classified as type 4A, better known as "ferroportin disease", which is due to "loss of function" mutations that lead to decreased iron export from cells, or as type 4B hemochromatosis, which is caused by "gain of function" mutations, conferring partial or complete resistance to hepcidin-mediated Fpn degradation. In this work, we discuss clinical and molecular findings on a group of patients in whom a SLC40A1 single copy missense variant was identified. Three novel variants, p.D181N, p.G204R and p.R296Q were functionally characterized. Fpn D181N and R296Q mutants can be classified as full or partial loss of function, respectively. Replacement of G204 with arginine appears to cause a more complex defect with impact both on iron export function and hepcidin sensitivity. This finding confirms the difficulty of predicting the effect of a mutation on the molecular properties of Fpn in order to provide an exhaustive explanation to the wide variability of the phenotype in type 4 hereditary hemochromatosis.


Subject(s)
Cation Transport Proteins/deficiency , Hemochromatosis/genetics , Mutation , Adolescent , Adult , Aged , Cation Transport Proteins/genetics , Child , Family Health , Female , Ferritins/metabolism , Genes, Dominant , Genetic Association Studies , HEK293 Cells , Hepcidins/chemistry , Homeostasis , Humans , Iron/chemistry , Italy , Male , Middle Aged , Molecular Conformation , Mutation, Missense , Phenotype , Young Adult
20.
Am J Hematol ; 92(4): 338-343, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28052375

ABSTRACT

Although hyperferritinemia may be reflective of elevated total body iron stores, there are conditions in which ferritin levels are disproportionately elevated relative to iron status. Autosomal dominant forms of hyperferritinemia due to mutations in the L-ferritin IRE or in A helix of L-ferritin gene have been described, however cases of isolated hyperferritinemia still remain unsolved. We describe 12 Italian subjects with unexplained isolated hyperferritinemia (UIH). Four probands have affected siblings, but no affected parents or offspring. Sequencing analyses did not identify casual mutations in ferritin gene or IRE regions. These patients had normal levels of intracellular ferritin protein and mRNA in peripheral blood cells excluding pathological ferritin production at transcriptional and post-transcriptional level. In contrast with individuals with benign hyperferritinemia caused by mutations affecting the ferritin A helix, low rather than high glycosylation of serum ferritin was observed in our UIH subjects compared with controls. These findings suggest that subjects with UIH have a previously undescribed form of hyperferritinemia possibly attributable to increased cellular ferritin secretion and/or decreased serum ferritin clearance. The cause remains to be defined and we can only speculate the existence of mutations in gene/s not directly implicated in iron metabolism that could affect ferritin turnover including ferritin secretion.


Subject(s)
Ferritins/blood , Iron Metabolism Disorders/etiology , Adult , Case-Control Studies , Female , Glycosylation , Humans , Iron Overload , Italy , Male , Middle Aged , Pedigree , RNA, Messenger/blood , Siblings , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...