Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Diagnostics (Basel) ; 13(10)2023 May 09.
Article in English | MEDLINE | ID: mdl-37238158

ABSTRACT

There has not been extensive research into crossed cerebellar diaschisis (CCD) in neurodegenerative disorders. CCD is frequently detected using positron emission tomography (PET). However, advanced MRI techniques have come forth for the detection of CCD. The correct diagnosis of CCD is crucial for the care of neurological patients and those with neurodegenerative conditions. The purpose of this study is to determine whether PET can offer extra value over MRI or an advanced technique in MRI for detecting CCD in neurological conditions. We searched three main electronic databases from 1980 until the present and included only English and peer-reviewed journal articles. Eight articles involving 1246 participants met the inclusion criteria, six of which used PET imaging while the other two used MRI and hybrid imaging. The findings in PET studies showed decreased cerebral metabolism in the frontal, parietal, temporal, and occipital cortices, as on the opposite side of the cerebellar cortex. However, the findings in MRI studies showed decreased cerebellar volumes. This study concludes that PET is a common, accurate, and sensitive technique for detecting both crossed cerebellar and uncrossed basal ganglia as well as thalamic diaschisis in neurodegenerative diseases, while MRI is better for measuring brain volume. This study suggests that PET has a higher diagnostic value for diagnosing CCD compared to MRI, and that PET is a more valuable technique for predicting CCD.

2.
Front Med (Lausanne) ; 9: 1076184, 2022.
Article in English | MEDLINE | ID: mdl-36714121

ABSTRACT

Coronavirus disease 2019 (COVID-19) is caused by a coronavirus family member known as severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). The main laboratory test to confirm the quick diagnosis of COVID-19 infection is reverse transcription-polymerase chain reaction (RT-PCR) based on nasal or throat swab sampling. A small percentage of false-negative RT-PCR results have been reported. The RT-PCR test has a sensitivity of 50-72%, which could be attributed to a low viral load in test specimens or laboratory errors. In contrast, chest CT has shown 56-98% of sensitivity in diagnosing COVID-19 at initial presentation and has been suggested to be useful in correcting false negatives from RT-PCR. Chest X-rays and CT scans have been proposed to predict COVID-19 disease severity by displaying the score of lung involvement and thus providing information about the diagnosis and prognosis of COVID-19 infection. As a result, the current study provides a comprehensive overview of the utility of the severity score index using X-rays and CT scans in diagnosing patients with COVID-19 when compared to RT-PCR.

SELECTION OF CITATIONS
SEARCH DETAIL
...