Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 16(10)2023 May 19.
Article in English | MEDLINE | ID: mdl-37241469

ABSTRACT

This paper describes methods for evaluating the thermal properties of textile materials, clothing composites, and clothing using an integrated measurement system that includes a hot plate, a multi-purpose differential conductometer, a thermal manikin, a temperature gradient measurement device, and a device for measuring the physiological parameters of the human body during the exact evaluation of garment thermal comfort. In practice, measurements were taken on four types of materials widely used in the production of conventional and protective clothing. The measurements were carried out using a hot plate and a multi-purpose differential conductometer, determining the thermal resistance of the material both in its uncompressed form and when a force was applied that was ten times greater than that needed to determine its thickness. Using a hot plate and a multi-purpose differential conductometer, thermal resistances of textile materials were assessed at different levels of material compression. On hot plates, both conduction and convection had an impact on thermal resistance, but in the multi-purpose differential conductometer, only conduction did. Moreover, a reduction in thermal resistance was observed as a result of compressing textile materials.

2.
Materials (Basel) ; 13(12)2020 Jun 12.
Article in English | MEDLINE | ID: mdl-32545431

ABSTRACT

This paper presents the measurement results of the thermal insulation of the outer shell, thermal inserts, and clothing systems, as well as a comparative analysis of the thermal insulation of multi-layer thermal inserts in a thermal jacket intended for professional services in cold weather. Detachable thermal inserts are made of double-faced, diamond-shaped quilted lining with different masses per unit area, and together with the jacket, they form clothing systems with different thermal properties. Tests of the thermal properties of clothing were performed on a thermal manikin. They showed that an increase in the mass of thermal insulation textile materials contributes to an increase in the thermal insulation properties of clothing and are insufficient for a complete analysis of the thermal properties of clothing. Therefore, for the first time, three new parameters of integration efficiency of the thermal insert, thermal insulation efficiency parameters, and efficiency parameters of the integration of the textile material integrated into the clothing system were introduced. Based on these parameters, it is possible to perform an effective and accurate comparative analysis of the thermal insulation of multi-layer thermal inserts in clothing. This makes it possible to apply exact scientific methods largely in the technical design of the thermal properties of integrated textile materials, instead of experience-based methods as in the past.

SELECTION OF CITATIONS
SEARCH DETAIL
...