Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
Small ; 18(31): e2202626, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35802900

ABSTRACT

Binary van der Waals heterostructures of graphene (Gr) and transition metal dichalcogenide (TMDC) have evolved as a promising candidate for photodetection with very high responsivity due to the separation of photo-excited electron-hole pairs across the interface. The spectral range of optoelectronic response in such hybrids has so far been limited by the optical bandgap of the light absorbing TMDC layer. Here, the bidirectionality of interlayer charge transfer is utilized for detecting sub-band gap photons in Gr-TMDC heterostructures. A Gr/MoSe2 heterostructure sequentially driven by visible and near infra-red (NIR) photons is employed, to demonstrate that NIR induced back transfer of charge allows fast and repeatable detection of the low energy photons (less than the optical band gap of the TMDC layer). This mechanism provides photoresponsivity as high as ≈3000 A W-1 close to the communication wavelength. The experiment provides a new strategy for achieving highly efficient photodetection over a broad range of energies beyond the spectral bandgap with the 2D semiconductor family.

3.
ACS Appl Bio Mater ; 5(7): 3563-3572, 2022 07 18.
Article in English | MEDLINE | ID: mdl-35775242

ABSTRACT

Coronavirus disease (COVID-19) is an infectious disease that has posed a global health challenge caused by the SARS-CoV-2 virus. Early management and diagnosis of SARS-CoV-2 are crucial for the timely treatment, traceability, and reduction of viral spread. We have developed a rapid method using a Graphene-based Field-Effect Transistor (Gr-FET) for the ultrasensitive detection of SARS-CoV-2 Spike S1 antigen (S1-Ag). The in-house developed antispike S1 antibody (S1-Ab) was covalently immobilized on the surface of a carboxy functionalized graphene channel using carbodiimide chemistry. Ultraviolet-visible spectroscopy, Fourier-Transform Infrared Spectroscopy, X-ray Photoelectron Spectroscopy (XPS), Atomic Force Microscopy (AFM), Optical Microscopy, Raman Spectroscopy, Scanning Electron Microscopy (SEM), Enzyme-Linked Immunosorbent Assays (ELISA), and device stability studies were conducted to characterize the bioconjugation and fabrication process of Gr-FET. In addition, the electrical response of the device was evaluated by monitoring the change in resistance caused by Ag-Ab interaction in real time. For S1-Ag, our Gr-FET devices were tested in the range of 1 fM to 1 µM with a limit of detection of 10 fM in the standard buffer. The fabricated devices are highly sensitive, specific, and capable of detecting low levels of S1-Ag.


Subject(s)
COVID-19 , Graphite , COVID-19/diagnosis , Graphite/chemistry , Humans , Neoplasm Proteins , SARS-CoV-2 , Spike Glycoprotein, Coronavirus
SELECTION OF CITATIONS
SEARCH DETAIL
...