Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
J Ayurveda Integr Med ; 15(3): 100902, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38821011

ABSTRACT

BACKGROUND: Drug research is increasingly using Network Pharmacology (NP) to tackle complex conditions like Metabolic Syndrome (MetS), which is characterized by obesity, hyperglycemia, and dyslipidemia. Single-action drugs are inadequate to treat MetS, which is marked by a range of complications including glucose intolerance, hyperlipidemia, mitochondrial dysfunction, and inflammation. OBJECTIVES: To analyze Chandraprabha vati using Network Pharmacology to assess its potential in alleviating MetS-related complications. MATERIAL AND METHODS: The genes related to MetS, inflammation, and the target genes of the CPV components were identified using network pharmacology tools like DisgNET and BindingDB. Followed by mapping of the CPV target genes with the genes implicated in MetS and inflammation to identify putative potential targets. Gene ontology, pathway enrichment analysis, and STRING database were employed for further exploration. Furthermore, drug-target-protein interactions network were visualized using Cytoscape 3.9.1. RESULTS: The results showed that out of the 225 target genes of the CPV components, 33 overlapping and 19 non-overlapping genes could be potential targets for MetS. Similarly, 14 overlapping and 7 non-overlapping genes could be potential targets for inflammation. The CPV bioactives target genes were found to be involved in lipid and insulin homeostasis via several pathways revealed by the pathway analysis. The importance of CPV in treating MetS was supported by GO enrichment data; this could be due to its potential to influence pathways linked to metabolism, ER stress, mitochondrial dysfunction, oxidative stress, and inflammation. CONCLUSIONS: These results offer a promising approach to developing treatment and repurposing CPV for complex conditions such as MetS.

2.
Metab Brain Dis ; 38(6): 1841-1856, 2023 08.
Article in English | MEDLINE | ID: mdl-37289403

ABSTRACT

Endoplasmic stress response, the unfolded protein response (UPR), is a homeostatic signaling pathway comprising transmembrane sensors that get activated upon alterations in ER luminal environment. Studies suggest a relation between activated UPR pathways and several disease states such as Parkinson, Alzheimer, inflammatory bowel disease, tumor growth, and metabolic syndrome. Diabetic peripheral neuropathy (DPN), a common microvascular complication of diabetes-related chronic hyperglycemia, causes chronic pain, loss of sensation, foot ulcers, amputations, allodynia, hyperalgesia, paresthesia, and spontaneous pain. Factors like disrupted calcium signaling, dyslipidemia, hyperglycemia, inflammation, insulin signaling, and oxidative stress disturb the UPR sensor levels manifesting as DPN. We discuss new effective therapeutic alternatives for DPN that can be developed by targeting UPR pathways like synthetic ER stress inhibitors like 4-PhenylButyric acid (4-PBA), Sephin 1, Salubrinal and natural ER stress inhibitors like Tauroursodeoxycholic acid (TUDCA), Cordycepin, Proanthocyanidins, Crocin, Purple Rice extract and cyanidin and Caffeic Acid Phenethyl Ester (CAPE).


Subject(s)
Diabetes Mellitus , Diabetic Neuropathies , Hyperglycemia , Humans , Diabetic Neuropathies/drug therapy , Diabetic Neuropathies/metabolism , Endoplasmic Reticulum Stress , Unfolded Protein Response , Signal Transduction
3.
Metab Brain Dis ; 37(7): 2181-2195, 2022 10.
Article in English | MEDLINE | ID: mdl-35616799

ABSTRACT

About 50% of the diabetic patients worldwide suffer from Diabetic peripheral neuropathy (DPN) which is characterized by chronic pain and loss of sensation, frequent foot ulcerations, and risk for amputation. Numerous factors like hyperglycemia, oxidative stress (OS), impaired glucose signaling, inflammatory responses, neuronal cell death are known to be the various mechanisms underlying DACD and DPN. Development of tolerance, insufficient and inadequate relief and potential toxicity of classical antinociceptives still remains a challenge in the clinical setting. Therefore, there is an emerging need for novel treatments which are both without any potential side effects as well as which focus more on the pathophysiological mechanisms underlying the disease. Also, sirtuins are known to deacetylate Nrf2 and contribute to its action of reducing ROS by generation of anti-oxidant enzymes. Therefore, targeting sirtuins could be a favourable therapeutic strategy to treat diabetic neuropathy by reducing ROS and thereby alleviating OS in DPN. In the present review, we outline the potential use of SIRT1 activators as therapeutic alternatives in treating DPN. We have tried to highlight how sirtuins are interlinked with Nrf2 and NF-κB and put forth how SIRT activators could serve as potential therapy for DPN.


Subject(s)
Diabetes Mellitus , Diabetic Neuropathies , Sirtuins , Humans , Antioxidants/therapeutic use , Diabetic Neuropathies/drug therapy , Diabetic Neuropathies/metabolism , Glucose , NF-E2-Related Factor 2/metabolism , NF-kappa B , Reactive Oxygen Species , Sirtuin 1 , Sirtuins/therapeutic use
4.
Curr Res Physiol ; 5: 36-47, 2022.
Article in English | MEDLINE | ID: mdl-35098155

ABSTRACT

Network pharmacology is an emerging field which is currently capturing interest in drug discovery and development. Chronic kidney conditions have become a threat globally due to its associated lifelong therapies. Nephrotic syndrome (NS) is a common glomerular disease that is seen in paediatric and adult population with characteristic manifestation of proteinuria, oedema, hypoalbuminemia, and hyperlipidemia. It involves podocyte damage with tubulointerstitial fibrosis and glomerulosclerosis. Till date there has been no specific treatment available for this condition that provides complete remission. Repurposing of drugs can thus be a potential strategy for the treatment of NS. Recently, epigenetic mechanisms were identified that promote progression of many renal diseases. Therefore, in the present study, we investigated two epigenetic drugs valproic acid (VPA) and all-trans retinoic acid (ATRA). Epigenetic drugs act by binging about changes in gene expression without altering the DNA sequence. The changes include DNA methylation or histone modifications. The targets for the two drugs ATRA and VPA were collated from ChEMBL and Binding DB. All the genes associated with NS were collected from DisGeNET and KEGG database. Interacting proteins for the target genes were acquired from STRING database. The genes were then subjected to gene ontology and pathway enrichment analysis using a functional enrichment software tool. A drug-target and drug-potential target-protein interaction network was constructed using the Cytoscape software. Our results revealed that the two drugs VPA and ATRA had 65 common targets that contributed to kidney diseases. Out of which, 25 targets were specifically NS associated. Further, our work exhibited that ATRA and VPA were synergistically involved in pathways of inflammation, renal fibrosis, glomerulosclerosis and possibly mitochondrial biogenesis and endoplasmic reticulum stress. We thus propose a synergistic potential of the two drugs for treating chronic kidney diseases, specifically NS. The outcomes will undoubtedly invigorate further preclinical and clinical explorative studies. We identify network pharmacology as an initial inherent approach in identifying drug candidates for repurposing and synergism.

5.
Clin Immunol ; 233: 108879, 2021 12.
Article in English | MEDLINE | ID: mdl-34798239

ABSTRACT

COVID-19 is a pandemic requiring immediate solution for treatment because of its complex pathophysiology. Exploration of novel targets and thus treatment will be life savers which is the need of the hour. 2 host factors- TMPRSS2 and ACE2 are responsible for the way the virus will enter and replicate in the host. Also NRF2 is an important protein responsible for its anti-inflammatory role by multiple mechanisms of action like inhibition of NF-kB, suppression of pro-inflammatory genes, etc. NRF2 is deacetylated by Sirtuins and therefore both have a direct association. Absence of SIRT indicates inhibition of NRF2 expression and thus no anti-oxidative and anti-inflammatory protection for the cell. Therefore, we propose that NRF2 activators and/or SIRT activators can be evaluated to check their efficacy in ameliorating the symptoms of COVID-19.


Subject(s)
COVID-19/immunology , NF-E2-Related Factor 2/immunology , SARS-CoV-2/immunology , Sirtuins/immunology , Angiotensin-Converting Enzyme 2/immunology , Angiotensin-Converting Enzyme 2/metabolism , Animals , COVID-19/metabolism , COVID-19/virology , Host-Pathogen Interactions/immunology , Humans , NF-E2-Related Factor 2/metabolism , SARS-CoV-2/metabolism , SARS-CoV-2/physiology , Serine Endopeptidases/immunology , Serine Endopeptidases/metabolism , Sirtuins/metabolism , Virus Attachment
6.
Eur J Pharmacol ; 881: 173273, 2020 Aug 15.
Article in English | MEDLINE | ID: mdl-32535101

ABSTRACT

Mitochondrial dysfunction and Inflammation play a significant role in the manifestation of the co-morbidities of obesity. The study deciphered the impact of Pyrroloquinoline quinone (PQQ) per se and with Atorvastatin (ATS) on high fat, 10% fructose diet (HFFD) induced obese rats expressing low-grade inflammation, dyslipidemia, and mitochondrial dysfunction. HFFD was fed for 10 weeks followed by treatment for 5 weeks with ATS 10 or 20 mg/kg, PQQ 10 or 20 mg/kg, p.o. per se or their combinations. The impact on blood glucose, lipid profile and serum insulin, TNF-α, IL-1ß, IL-18, IL-6 was estimated. Gene and protein expression of peroxisome proliferator-activated receptor gamma coactivator-1 alpha (PGC 1α), Sirtuin 1 (SIRT1), Mitochondrial transcriptional factor A (TFAM) and augmented mitochondrial DNA (mtDNA), NOD like receptor protein 3 (NLRP3) and Caspase 1 was assessed. Rats receiving PQQ and ATS revealed significant decrease in body weights, anthropometric parameter, and adipose tissue vis-à-vis positive control. PQQ alone and with ATS improved glucose tolerance, lipid profile, insulin indices and lowered serum levels of inflammatory cytokines IL-18, IL-1ß, TNF-α and IL-6 along with a rise in adiponectin. PQQ supplementation with ATS upregulated the mRNA expression of PGC 1α, SIRT1, TFAM and augmented mtDNA while downregulating inflammatory markers NLRP3 and Caspase 1. PQQ supplementation with atorvastatin holds therapeutic promise to effectively combat mitochondrial dysfunction and chronic low-grade inflammation in obesity.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Atorvastatin/pharmacology , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacology , Inflammation/prevention & control , Liver/drug effects , Mitochondria, Liver/drug effects , Obesity/drug therapy , Organelle Biogenesis , PQQ Cofactor/pharmacology , Animals , Blood Glucose/drug effects , Blood Glucose/metabolism , Cytokines/blood , Disease Models, Animal , Drug Therapy, Combination , Gene Expression Regulation , Inflammation/etiology , Inflammation/metabolism , Inflammation/pathology , Inflammation Mediators/blood , Lipids/blood , Liver/metabolism , Liver/pathology , Male , Mitochondria, Liver/genetics , Mitochondria, Liver/metabolism , Mitochondria, Liver/pathology , Obesity/complications , Obesity/metabolism , Obesity/pathology , Rats, Sprague-Dawley
7.
Int Immunopharmacol ; 84: 106575, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32416453

ABSTRACT

Acute Graft versus Host Disease (aGVHD) is a frequent and serious complication in patients receiving allogeneic bone marrow transplantation (allo-BMT) and often requires rigorous prophylaxis. The current treatment regimens for aGVHD are associated with several side effects which necessitates the development of novel interventions that prevent aGVHD without precluding graft-versus-tumor effects. In the present study, we show that treatment of donor graft with plant steroidal lactone Withaferin A (WA) prior to transplantation markedly reduced aGVHD mediated damage in target organs without compromising the graft-versus.-tumor activity of the transplanted lymphocytes. WA abrogated post-transplant cytokine storm associated with allo-activation of donor lymphocytes. This was attributed to the ability of WA to inhibit early signaling events in T-cell activation including lymphoblast formation and activation of AKT/mTOR pathway. Mortality and morbidity related to allo-transplantation was significantly reduced in recipients of WA treated donor splenocytes compared to recipient of vehicle treated donor splenocytes. Further, WA treatment did not have any effect on reconstitution of lymphoid and myeloid lineages in recipients, resulting in stable and complete donor chimerism. In agreement with previous reports showing the effectiveness of WA in a mouse model of partial chimerism, our data further establishes that WA is able to attenuate aGVHD in an MHC-mismatched high dose chemo-conditioned murine model without compromising engraftment. This study provides compelling scientific basis for possible application of WA for prevention and treatment of aGVHD in patients receiving allo-BMT.


Subject(s)
Bone Marrow Transplantation , Graft vs Host Disease/prevention & control , Proto-Oncogene Proteins c-akt/immunology , TOR Serine-Threonine Kinases/immunology , Withanolides/therapeutic use , Animals , Female , Male , Mice, Inbred BALB C , Withanolides/pharmacology
8.
Biomed Pharmacother ; 114: 108770, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30913494

ABSTRACT

Low dose Methotrexate (MTX) therapy is considered a gold standard for Rheumatoid Arthritis (RA). Transdermal drug delivery is hypothesized as an alternative to conventional therapies to alleviate its adverse effects. In our study, MTX was entrapped in deformable liposomes and loaded in a hydroxyethyl cellulose gel. This system was evaluated by the Box Behnken statistical design for optimization. The effect of formulation variables on particle size, entrapment and ex vivo skin permeation was studied. The MTX nanogel was evaluated for its dermal toxicity (acute and repeat dose safety), in vivo biodistribution (using 125I radio-labelled MTX) and therapeutic efficacy (collagen induced arthritis [CIA] model). The optimized formulation demonstrated appreciable nanosize (110 ± 20 nm), drug entrapment (42 ± 1.9%) and high ex vivo transdermal flux (17.37 ± 1.5 µg/cm2/hr). In the dermal toxicity studies, nanogel formulation did not show any signs of irritation or toxicity, whereas in the biodistribution study, the MTX nanogel formulation depicted sustained systemic delivery up to 48 h with low accumulation in its organs of toxicity such as the liver, kidneys and gut. In the CIA model, the MTX nanogel significantly ameliorated hind paw swelling, reduced arthritic score, joint damage (histological, radiological examination) and attenuated the rise in serum cytokines such as TNF-ɑ and IL-6. In conclusion, the optimized MTX nanogel formulation displayed skin biocompatibility, sustained systemic delivery, safety as well as therapeutic efficacy.


Subject(s)
Drug Carriers/chemistry , Methotrexate/administration & dosage , Methotrexate/metabolism , Skin Absorption/drug effects , Skin/metabolism , Administration, Cutaneous , Animals , Arthritis, Experimental/drug therapy , Arthritis, Experimental/metabolism , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/metabolism , Chemistry, Pharmaceutical/methods , Female , Liposomes/chemistry , Male , Particle Size , Polyethylene Glycols/chemistry , Polyethyleneimine/pharmacology , Psoriasis/drug therapy , Rats , Rats, Sprague-Dawley , Rats, Wistar , Tissue Distribution/physiology
9.
Saudi Pharm J ; 27(1): 71-81, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30662309

ABSTRACT

BACKGROUND: Pterostilbene has a proven chemopreventive effect for colon carcinogenesis but suffers low bioavailability limitations and therefore unable to reach the colonic tissue. OBJECTIVE AND METHODOLOGY: To overcome the issue of low bioavailability, pterostilbene was formulated into an oral colon targeted beads by ionic gelation method using pectin and zinc acetate. Optimization was carried out by 23 factorial design whereby the effect of pectin concentration (X 1), zinc acetate concentration (X 2) and pterostilbene:pectin ratio (X 3) were studied on entrapment efficiency (Y 1) and in vitro drug release till 24 h (Y 2). The optimized beads were characterized for shape and size, swelling and surface morphology. The optimized beads were uniformly coated with Eudragit S-100 using fluidized bed coater. Optimized coated beads were characterized for in vitro drug release till 24 h and surface morphology. Pharmacokinetic and organ distribution study were performed in rats to ascertain the release of pterostilbene in colon. RESULTS: The optimized formulation comprised of 2% w/v of pectin concentration (X 1), 2% w/v of zinc acetate concentration (X 2) and 1:4 of pterostilbene:pectin ratio (X 3), which showed a satisfactory entrapment efficiency (64.80%) and in vitro release (37.88%) till 24 h. The zinc pectinate beads exhibited sphericity, uniform size distribution, adequate swelling and rough surface. The optimized coated beads achieved 15% weight gain, displayed smooth surface and optimum drug release. Pterostilbene from optimized coated beads appeared in the plasma at 14 h and reached the Cmax at 22 h (Tmax), whereas plain pterostilbene exhibited Tmax of 3 h. DISCUSSION AND CONCLUSION: Thus, larger distribution of pterostilbene was obtained in the colonic tissue compared to stomach and small intestinal tissues. Thus, delayed Tmax and larger distribution of pterostilbene in colonic tissue confirmed the targeting of beads to colon.

10.
Drug Dev Ind Pharm ; 45(2): 188-201, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30348022

ABSTRACT

Transdermal route has been explored for various agents due to its advantage of bypassing the first pass effect and sustained release of drug. Due to strong barrier properties of the skin, mainly stratum corneum (SC), the delivery of many therapeutic agents across the skin has become challenging. Few drugs with specific physicochemical properties (molecular weight <500 Da, adequate lipophilicity, and low melting point) can be effectively administered via transdermal route. However, delivery of hydrophilic drugs and macromolecular agents including peptides, DNA and small interfering RNA is challenging. Drug penetration through the SC may involve bypass or reversible disruption of SC layer by various means. Recently, the use of micron-scale needles has been proposed in increasing skin permeability and shown to dramatically increase permeation, especially for macromolecules. Microneedles (MNs) can penetrate through the SC layer of the skin into the viable epidermis, avoiding contact with nerve fibers and blood vessels that reside primarily in the dermal layer. This review summarizes the types of MNs and fabrication techniques of different types of MNs. The safety aspects of the materials used for fabrication have been discussed in detail. Biological applications and relevant phase III clinical trials are also highlighted.


Subject(s)
Administration, Cutaneous , Drug Delivery Systems/instrumentation , Microinjections/instrumentation , Microinjections/methods , Needles , Animals , Humans
11.
AAPS PharmSciTech ; 19(8): 3584-3598, 2018 Nov.
Article in English | MEDLINE | ID: mdl-30209788

ABSTRACT

Nelfinavir mesylate (NFV), a human immunodeficiency virus (HIV) protease inhibitor, is an integral component of highly active anti retro viral therapy (HAART) for management of AIDS. NFV possesses pH-dependent solubility and has low and variable bioavailability hampering its use in therapeutics. Lipid-based particulates have shown to improve solubility of poorly water soluble drugs and oral absorption, thereby aiding in improved bioavailability. The current study compares potential of vesicular and solid lipid nanocarriers of NFV with drug nanocrystallites and microvesicular systems like cochleates in improving bioavailability of NFV. The paper outlines investigation of systems using in vitro models like in vitro lipolysis, in vitro release, and permeation through cell lines to predict the in vivo potential of nanocarriers. Finally, in vivo pharmacokinetic study is reported which provided proof of concept in sync with results from in vitro studies. Graphical Abstract ᅟ.


Subject(s)
HIV Protease Inhibitors/chemistry , Lipids/chemistry , Nelfinavir/chemistry , Animals , Biological Availability , Caco-2 Cells , Female , Humans , Nelfinavir/pharmacokinetics , Rats , Rats, Sprague-Dawley , Solubility
12.
Adv Exp Med Biol ; 1048: 37-57, 2018.
Article in English | MEDLINE | ID: mdl-29453531

ABSTRACT

Nanoparticles have specific physicochemical properties different to bulk materials of the same composition and such properties make them very attractive for commercial and medical applications. Mucoadhesive nanoparticulate dosage forms are designed to enable prolonged retention of these nanoparticles at the site of application, providing a controlled drug release for improved therapeutic outcome. Moreover, drug delivery across the mucosa bypasses the first-pass hepatic metabolism and avoids the degradation by gastrointestinal enzymes. However, like most new technologies, there is a rising debate concerning the possible transmucosal side effects resulting from the use of particles at the nano level. In fact, these nanoparticles on entering the body, deposit in several organs and may cause adverse biological reactions by modifying the physiochemical properties of living matter. Several investigators have found nanoparticles responsible for toxicity in different organs. In addition, the toxicity of nanoparticles also depends on whether they are persistent or cleared from the different organs of entry and whether the host can raise an effective response to sequester or dispose of the particles. In contrast to many efforts aimed at exploiting desirable properties of nanoparticles for medicine, there are limited attempts to evaluate potentially undesirable effects of these particles when administered intentionally for medical purposes. This chapter focuses on the overview of the mucosal systems, fate of nanoparticles, mechanism of nanoparticle's toxicity and the various toxicity issues associated with nanoparticles through mucosal routes.


Subject(s)
Drug Delivery Systems/adverse effects , Intestinal Mucosa/metabolism , Liver/metabolism , Nanoparticles/adverse effects , Nanoparticles/metabolism , Animals , Humans , Intestinal Mucosa/pathology , Liver/pathology , Organ Specificity
13.
Arch Physiol Biochem ; 124(3): 194-206, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29072101

ABSTRACT

Mitochondria play a pivotal role in physiological energy governance. Mitochondrial biogenesis comprises growth and division of pre-existing mitochondria, triggered by environmental stressors such as endurance exercise, caloric restriction, cold exposure and oxidative stress. For normal physiology, balance between energy intake, storage and expenditure is of utmost important for the coordinated regulation of energy homeostasis. In contrast, abnormalities in these regulations render the individual susceptible to cardiometabolic disorders. This review provides a comprehensive coverage and understanding on mitochondrial biogenesis achieved through energy-sensing pathways. This includes the complex coordination of nuclear, cytosolic and mitochondrial events involving energy sensors, transcription factors, coactivators and regulators. It focuses on the importance of mitochondrial biogenesis in cardiometabolic health. Lastly, converging on the benefits of caloric restriction and endurance exercise in achieving cardiometabolic health.


Subject(s)
Energy Metabolism , Myocardium/metabolism , Organelle Biogenesis , Animals , Humans , Myocardium/cytology , Signal Transduction , Transcription, Genetic
14.
Pathophysiology ; 25(1): 19-30, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29153770

ABSTRACT

In recent years there has been a tremendous increase in use of Wi-Fi devices along with mobile phones, globally. Wi-Fi devices make use of 2.4GHz frequency. The present study evaluated the impact of 2.45GHz radiation exposure for 4h/day for 45days on behavioral and oxidative stress parameters in female Sprague Dawley rats. Behavioral tests of anxiety, learning and memory were started from day 38. Oxidative stress parameters were estimated in brain homogenates after sacrificing the rats on day 45. In morris water maze, elevated plus maze and light dark box test, the 2.45GHz radiation exposed rats elicited memory decline and anxiety behavior. Exposure decreased activities of super oxide dismutase, catalase and reduced glutathione levels whereas increased levels of brain lipid peroxidation was encountered in the radiation exposed rats, showing compromised anti-oxidant defense. Expression of caspase 3 gene in brain samples were quantified which unraveled notable increase in the apoptotic marker caspase 3 in 2.45GHz radiation exposed group as compared to sham exposed group. No significant changes were observed in histopathological examinations and brain levels of TNF-α. Analysis of dendritic arborization of neurons showcased reduction in number of dendritic branching and intersections which corresponds to alteration in dendritic structure of neurons, affecting neuronal signaling. The study clearly indicates that exposure of rats to microwave radiation of 2.45GHz leads to detrimental changes in brain leading to lowering of learning and memory and expression of anxiety behavior in rats along with fall in brain antioxidant enzyme systems.

15.
Cogn Neurodyn ; 11(1): 35-49, 2017 Feb.
Article in English | MEDLINE | ID: mdl-28174611

ABSTRACT

There is strong evidence that mitochondrial dysfunction mediated oxidative stress results in aging and energy metabolism deficits thus playing a prime role in pathogenesis of Alzheimer's disease, neuronal death and cognitive dysfunction. Evidences accrued in empirical studies suggest the antioxidant, anticancer and anti-inflammatory activities of the phytochemical pterostilbene (PTS). PTS also exhibits favourable pharmacokinetic attributes compared to other stilbenes. Hence, in the present study, we explored the neuroprotective role of PTS in ameliorating the intracerebroventricular administered streptozotocin (STZ) induced memory decline in rats. PTS at doses of 10, 30 and 50 mg/kg, was administered orally to STZ administered Sprague-Dawley (SD) rats. The learning and memory tests, Morris water maze test and novel object recognition test were performed which revealed improved cognition on PTS treatment. Further, there was an overall improvement in brain antioxidant parameters like elevated catalase and superoxide dismutase activities, GSH levels, lowered levels of nitrites, lipid peroxides and carbonylated proteins. There was improved cholinergic transmission as evident by decreased acetylcholinesterase activities. The action of ATPases (Na+ K+, Ca2+ and Mg2+) indicating the maintenance of cell membrane potential was also augmented. mRNA expression of battery of genes involved in cellular mitochondrial biogenesis and inflammation showed variations which extrapolate to hike in mitochondrial biogenesis and abated inflammation. The histological findings corroborated the effective role of PTS in countering STZ induced structural aberrations in brain.

16.
Indian J Pharmacol ; 48(3): 241-7, 2016.
Article in English | MEDLINE | ID: mdl-27298491

ABSTRACT

OBJECTIVE: Intestinal mucositis is a significant problem haunting clinicians for decades. One of the major reasons for its occurrence is high-dose chemotherapy. The study is aimed at investigating effect of intestinal mucositis on pharmacokinetics, organ distribution, and bioavailability of azathioprine (AZA) (6-mercaptopurine). MATERIALS AND METHODS: Intestinal mucositis was induced with methotrexate (MTX) (2.5 mg/kg). The oral absorption of AZA and 6-mercaptopurine (metabolite) levels were determined in control and MTX-treated rats: ex vivo (noneverted sac technique) and in vivo (pharmacokinetics and organ-distribution) using high-performance liquid chromatography. Immunohistochemistry was conducted to evaluate peptide transporter expression on luminal membrane of small intestine. RESULTS: Intestinal permeation of AZA into systemic circulation of rats was lower after MTX administration, widely found in intestinal segments of mucositis-induced rats leading to decline in systemic bioavailability of AZA. Immunohistochemistry findings indicated diminution of peptide transporter expression representing hampered absorption of drugs absorbed via this transporter. CONCLUSION: Study outcome has thrown light on altered fate of AZA when administered to individuals with mucositis which suggests modified drug therapy. These findings can further be investigated in different drug classes which might be administered concomitantly in mucositis and study outcome can be further confirmed in mucositis patients in clinical practice also.


Subject(s)
Antineoplastic Agents/adverse effects , Azathioprine/pharmacokinetics , Enteritis/chemically induced , Immunosuppressive Agents/pharmacokinetics , Methotrexate/adverse effects , Animals , Biological Availability , Body Weight , Citrulline/blood , Feeding Behavior , Glutathione/blood , Male , Peroxidase/metabolism , Rats , Rats, Sprague-Dawley , Tissue Distribution
17.
Toxicol Res ; 32(2): 123-32, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27123163

ABSTRACT

The impact of mobile phone (MP) radiation on the brain is of specific interest to the scientific community and warrants investigations, as MP is held close to the head. Studies on humans and rodents revealed hazards MP radiation associated such as brain tumors, impairment in cognition, hearing etc. Melatonin (MT) is an important modulator of CNS functioning and is a neural antioxidant hormone. Zebrafish has emerged as a popular model organism for CNS studies. Herein, we evaluated the impact of GSM900MP (GSM900MP) radiation exposure daily for 1 hr for 14 days with the SAR of 1.34W/Kg on neurobehavioral and oxidative stress parameters in zebrafish. Our study revealed that, GSM900MP radiation exposure, significantly decreased time spent near social stimulus zone and increased total distance travelled, in social interaction test. In the novel tank dive test, the GSM900MP radiation exposure elicited anxiety as revealed by significantly increased time spent in bottom half; freezing bouts and duration and decreased distance travelled, average velocity, and number of entries to upper half of the tank. Exposed zebrafish spent less time in the novel arm of the Y-Maze, corroborating significant impairment in learning as compared to the control group. Exposure decreased superoxide dismutase (SOD), catalase (CAT) activities whereas, increased levels of reduced glutathione (GSH) and lipid peroxidation (LPO) was encountered showing compromised antioxidant defense. Treatment with MT significantly reversed the above neurobehavioral and oxidative derangements induced by GSM900MP radiation exposure. This study traced GSM900MP radiation exposure induced neurobehavioral aberrations and alterations in brain oxidative status. Furthermore, MT proved to be a promising therapeutic candidate in ameliorating such outcomes in zebrafish.

18.
Can J Physiol Pharmacol ; 94(1): 89-96, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26571019

ABSTRACT

Methotrexate, an antifolate drug widely used in rheumatoid arthritis, psoriasis, and cancer, is known to cause vascular endothelial dysfunction by causing hyperhomocysteinemia, direct injury to endothelium or by increasing the oxidative stress (raising levels of 7,8-dihydrobiopterin). Curcumin is a naturally occurring polyphenol with strong antioxidant and anti-inflammatory action and therapeutic spectra similar to that of methotrexate. This study was performed to evaluate the effects of curcumin on methotrexate induced vascular endothelial dysfunction and also compare its effect with that produced by folic acid (0.072 µg·g(-1)·day(-1), p.o., 2 weeks) per se and in combination. Male Wistar rats were exposed to methotrexate (0.35 mg·kg(-1)·day(-1), i.p.) for 2 weeks to induce endothelial dysfunction. Methotrexate exposure led to shedding of endothelium, decreased vascular reactivity, increased oxidative stress, decreased serum nitrite levels, and increase in aortic collagen deposition. Curcumin (200 mg·kg(-1)·day(-1) and 400 mg·kg(-1)·day(-1), p.o.) for 4 weeks prevented the increase in oxidative stress, decrease in serum nitrite, aortic collagen deposition, and also vascular reactivity. The effects were comparable with those produced by folic acid therapy. The study shows that curcumin, when concomitantly administered with methotrexate, abrogated its vascular side effects by preventing an increase in oxidative stress and abating any reduction in physiological nitric oxide levels.


Subject(s)
Curcumin/administration & dosage , Endothelium, Vascular/drug effects , Folic Acid/administration & dosage , Methotrexate/antagonists & inhibitors , Methotrexate/toxicity , Animals , Antioxidants/administration & dosage , Aorta, Thoracic/drug effects , Aorta, Thoracic/pathology , Aorta, Thoracic/physiopathology , Collagen/metabolism , Endothelium, Vascular/pathology , Endothelium, Vascular/physiopathology , Glutathione/blood , Male , Malondialdehyde/blood , Methotrexate/administration & dosage , Nitrites/blood , Oxidative Stress/drug effects , Rats , Rats, Wistar , Superoxide Dismutase/blood , Vasodilation/drug effects
19.
Int Immunopharmacol ; 28(1): 773-9, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26283591

ABSTRACT

Cigarette smoking is considered to be the main etiological factor in Chronic Obstructive Pulmonary Disease (COPD). In this study, we explored the potential of resveratrol, to reinstate the effectiveness of dexamethasone when administered as an adjunct in acute lung inflammation induced by cigarette smoke (CS) and lipopolysaccharide (LPS). CS and LPS instillation produced acute inflammatory response exhibited by increased leukocyte count, particularly neutrophils, total protein, MMP-9 activity, cytokines like TNF-α, IL-8 in bronchoalveolar lavage fluid (BALF) as well as elevated myeloperoxidase activity, and lipid peroxidation in lung. These alterations were not abated by dexamethasone (2.5mg/kg & 10mg/kg) and resveratrol (50mg/kg) alone. Combination of resveratrol (50mg/kg) and dexamethasone (2.5mg/kg) significantly reduced all inflammatory parameters. The protective effect of the combination was abolished when co-administered with sirtinol, a SIRT1 inhibitor. The results indicate that the combination therapy may serve as a potential approach for treating lung inflammatory conditions like COPD.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Dexamethasone/therapeutic use , Lipopolysaccharides/toxicity , Pneumonia/drug therapy , Stilbenes/therapeutic use , Tobacco Products/toxicity , Acute Disease , Animals , Anti-Inflammatory Agents/administration & dosage , Dexamethasone/administration & dosage , Disease Models, Animal , Drug Synergism , Drug Therapy, Combination , Male , Pneumonia/chemically induced , Pneumonia/immunology , Rats, Sprague-Dawley , Resveratrol , Smoke , Stilbenes/administration & dosage
20.
J Complement Integr Med ; 12(2): 143-51, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25870973

ABSTRACT

BACKGROUND: Effective diet/drug combinations may show additive or synergistic effects in reducing endothelial risk factors vis-à-vis monotherapies. The study evaluated the effect of combined therapy of Telmisartan and omega 3-fatty acids in sodium arsenite-induced vascular endothelial dysfunction (VED) in rats. METHODS: Forty-eight male Wistar rats (180-220 g) were randomized into eight groups; control, sodium arsenite (1.5 mg/kg/day) exposed, sodium arsenite exposure followed by treatment with Telmisartan, omega 3-fatty acids, the combination and/or endothelial modulators for 2 weeks depending on the allocated group. VED was assessed by estimating vascular reactivity. Serum thiobarbituric acid-reactive substances (TBARS), nitrite/nitrate levels, reduced glutathione (GSH) levels, superoxide dismutase (SOD) activity, serum cholesterol and triglyceride levels were also determined. RESULTS: Sodium arsenite produced VED by attenuating acetylcholine-induced endothelial relaxation (% Rmax= 45.36), decreasing levels of serum nitrite/nitrate (9.28 µM/mg protein), GSH (16.06 µg/mg of protein), SOD activity (30.69 units/mg protein) and increasing TBARS (0.19 µM/mg protein) compared with control group. The combined therapy with Telmisartan (10 mg/kg/day) and omega 3-fatty acids (180 mg/kg/day) (% Rmax = 80.93, 13.09 µM/mg protein, 25.93 µg/mg of protein, 57.84 units/mg protein and 0.08 µM/mg protein, respectively) significantly abolished the respective derangements induced by sodium arsenite. Further, this combination significantly prevented rise in serum cholesterol and triglyceride levels that was induced by sodium arsenite. However, the ameliorative effects of this combination were abated by N-omega-nitro-L-arginine methyl ester (L-NAME) and glibenclamide. CONCLUSIONS: Combined therapy of Telmisartan and omega 3-fatty acids attenuated VED, by activating enzyme nitric oxide synthase (eNOS) through opening of ATP-sensitive K(+) channels.


Subject(s)
Benzimidazoles/therapeutic use , Benzoates/therapeutic use , Endothelium, Vascular/drug effects , Fatty Acids, Omega-3/therapeutic use , KATP Channels/metabolism , Vascular Diseases/drug therapy , Vasodilation/drug effects , Animals , Aorta, Thoracic , Arsenites , Benzimidazoles/pharmacology , Benzoates/pharmacology , Cardiovascular Agents/pharmacology , Cardiovascular Agents/therapeutic use , Cholesterol/blood , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiopathology , Fatty Acids, Omega-3/pharmacology , Glyburide/pharmacology , Male , NG-Nitroarginine Methyl Ester/pharmacology , Nitric Oxide Synthase Type III/metabolism , Oxidative Stress/drug effects , Rats, Wistar , Sodium Compounds , Telmisartan , Thiobarbituric Acid Reactive Substances , Triglycerides/blood , Vascular Diseases/chemically induced , Vascular Diseases/metabolism , Vascular Diseases/physiopathology
SELECTION OF CITATIONS
SEARCH DETAIL
...