Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Genesis ; 62(1): e23580, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37974491

ABSTRACT

Bop1 can promote cell proliferation and is a component of the Pes1-Bop1-WDR12 (PeBoW) complex that regulates ribosomal RNA processing and biogenesis. In embryos, however, bop1 mRNA is highly enriched in the neural plate, cranial neural crest and placodes, and potentially may interact with Six1, which also is expressed in these tissues. Recent work demonstrated that during development, Bop1 is required for establishing the size of the tadpole brain, retina and cranial cartilages, as well as controlling neural tissue gene expression levels. Herein, we extend this work by assessing the effects of Bop1 knockdown at neural plate and larval stages. Loss of Bop1 expanded neural plate gene expression domains (sox2, sox11, irx1) and reduced neural crest (foxd3, sox9), placode (six1, sox11, irx1, sox9) and epidermal (dlx5) expression domains. At larval stages, Bop1 knockdown reduced the expression of several otic vesicle genes (six1, pax2, irx1, sox9, dlx5, otx2, tbx1) and branchial arch genes that are required for chondrogenesis (sox9, tbx1, dlx5). The latter was not the result of impaired neural crest migration. Together these observations indicate that Bop1 is a multifunctional protein that in addition to its well-known role in ribosomal biogenesis functions during early development to establish the craniofacial precursor domains.


Subject(s)
Neural Crest , Transcription Factors , Neural Crest/metabolism , Transcription Factors/metabolism , Head , Skull/metabolism , Ribosomes/metabolism , Gene Expression Regulation, Developmental
2.
Front Cell Dev Biol ; 11: 1274788, 2023.
Article in English | MEDLINE | ID: mdl-37854072

ABSTRACT

Introduction: The Six1 transcription factor plays important roles in the development of cranial sensory organs, and point mutations underlie craniofacial birth defects. Because Six1's transcriptional activity can be modulated by interacting proteins, we previously screened for candidate interactors and identified zinc-finger MYM-containing protein 4 (Zmym4) by its inclusion of a few domains with a bona fide cofactor, Sine oculis binding protein (Sobp). Although Zmym4 has been implicated in regulating early brain development and certain cancers, its role in craniofacial development has not previously been described. Methods: We used co-immunoprecipitation and luciferase-reporter assays in cultured cells to test interactions between Zmym4 and Six1. We used knock-down and overexpression of Zmym4 in embryos to test for its effects on early ectodermal gene expression, neural crest migration and craniofacial cartilage formation. Results: We found no evidence that Zmym4 physically or transcriptionally interacts with Six1 in cultured cells. Nonetheless, knockdown of endogenous Zmym4 in embryos resulted in altered early cranial gene expression, including those expressed in the neural border, neural plate, neural crest and preplacodal ectoderm. Experimentally increasing Zmym4 levels had minor effects on neural border or neural plate genes, but altered the expression of neural crest and preplacodal genes. At larval stages, genes expressed in the otic vesicle and branchial arches showed reduced expression in Zmym4 morphants. Although we did not detect defects in neural crest migration into the branchial arches, loss of Zmym4 resulted in aberrant morphology of several craniofacial cartilages. Discussion: Although Zmym4 does not appear to function as a Six1 transcriptional cofactor, it plays an important role in regulating the expression of embryonic cranial genes in tissues critical for normal craniofacial development.

3.
Dev Dyn ; 252(12): 1407-1427, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37597164

ABSTRACT

BACKGROUND: Members of the sulfotransferase superfamily (SULT) influence the activity of a wide range of hormones, neurotransmitters, metabolites and xenobiotics. However, their roles in developmental processes are not well characterized even though they are expressed during embryogenesis. We previously found in a microarray screen that Six1 up-regulates LOC100037047, which encodes XB5850668.L, an uncharacterized sulfotransferase. RESULTS: Since Six1 is required for patterning the embryonic ectoderm into its neural plate, neural crest, preplacodal and epidermal domains, we used loss- and gain-of function assays to characterize the role of XB5850668.L during this process. Knockdown of endogenous XB5850668.L resulted in the reduction of epidermal, neural crest, cranial placode and otic vesicle gene expression domains, concomitant with neural plate expansion. Increased levels had minimal effects, but infrequently expanded neural plate and neural crest gene domains, and infrequently reduced cranial placode and otic vesicle gene domains. Mutation of two key amino acids in the sulfotransferase catalytic domain required for PAPS binding and enzymatic activity tended to reduce the effects of overexpressing the wild-type protein. CONCLUSIONS: Our analyses indicates that XB5850668.L is a member of the SULT2 family that plays important roles in patterning the embryonic ectoderm. Some aspects of its influence likely depend on sulfotransferase activity.


Subject(s)
Ectoderm , Neural Crest , Neural Crest/metabolism , Skull/metabolism , Embryonic Development/genetics , Sulfotransferases/genetics , Sulfotransferases/metabolism , Gene Expression Regulation, Developmental
4.
Development ; 148(17)2021 09 01.
Article in English | MEDLINE | ID: mdl-34414417

ABSTRACT

Branchio-oto-renal syndrome (BOR) is a disorder characterized by hearing loss, and craniofacial and/or renal defects. Variants in the transcription factor Six1 and its co-factor Eya1, both of which are required for otic development, are linked to BOR. We previously identified Sobp as a potential Six1 co-factor, and SOBP variants in mouse and humans cause otic phenotypes; therefore, we asked whether Sobp interacts with Six1 and thereby may contribute to BOR. Co-immunoprecipitation and immunofluorescence experiments demonstrate that Sobp binds to and colocalizes with Six1 in the cell nucleus. Luciferase assays show that Sobp interferes with the transcriptional activation of Six1+Eya1 target genes. Experiments in Xenopus embryos that either knock down or increase expression of Sobp show that it is required for formation of ectodermal domains at neural plate stages. In addition, altering Sobp levels disrupts otic vesicle development and causes craniofacial cartilage defects. Expression of Xenopus Sobp containing the human variant disrupts the pre-placodal ectoderm similar to full-length Sobp, but other changes are distinct. These results indicate that Sobp modifies Six1 function and is required for vertebrate craniofacial development, and identify Sobp as a potential candidate gene for BOR.


Subject(s)
Bone Development , Homeodomain Proteins/metabolism , Metalloproteins/metabolism , Nuclear Proteins/metabolism , Xenopus Proteins/metabolism , Animals , Branchio-Oto-Renal Syndrome/embryology , Branchio-Oto-Renal Syndrome/genetics , Cell Nucleus/metabolism , Ear, Inner/embryology , Ear, Inner/metabolism , Ectoderm/embryology , Ectoderm/metabolism , Gene Expression , Homeodomain Proteins/genetics , Larva/growth & development , Metalloproteins/genetics , Neural Crest/embryology , Neural Crest/metabolism , Nuclear Proteins/genetics , Protein Binding , Protein Tyrosine Phosphatases/metabolism , Transcriptional Activation , Xenopus Proteins/genetics , Xenopus laevis
5.
J Dev Biol ; 9(3)2021 Jun 30.
Article in English | MEDLINE | ID: mdl-34208995

ABSTRACT

Several single-nucleotide mutations in SIX1 underlie branchio-otic/branchio-oto-renal (BOR) syndrome, but the clinical literature has not been able to correlate different variants with specific phenotypes. We previously assessed whether variants in either the cofactor binding domain (V17E, R110W) or the DNA binding domain (W122R, Y129C) might differentially affect early embryonic gene expression, and found that each variant had a different combination of effects on neural crest and placode gene expression. Since the otic vesicle gives rise to the inner ear, which is consistently affected in BOR, herein we focused on whether the variants differentially affected the otic expression of genes previously found to be likely Six1 targets. We found that V17E, which does not bind Eya cofactors, was as effective as wild-type Six1 in reducing most otic target genes, whereas R110W, W122R and Y129C, which bind Eya, were significantly less effective. Notably, V17E reduced the otic expression of prdm1, whereas R110W, W122R and Y129C expanded it. Since each mutant has defective transcriptional activity but differs in their ability to interact with Eya cofactors, we propose that altered cofactor interactions at the mutated sites differentially interfere with their ability to drive otic gene expression, and these differences may contribute to patient phenotype variability.

6.
Dev Biol ; 467(1-2): 39-50, 2020 11 01.
Article in English | MEDLINE | ID: mdl-32891623

ABSTRACT

The Six1 transcription factor plays a major role in craniofacial development. Mutations in SIX1 and its co-factor, EYA1, are causative for about 50% of Branchio-otic/Branchio-oto-renal syndrome (BOR) patients, who are characterized by variable craniofacial, otic and renal malformations. We previously screened for other proteins that might interact with Six1 to identify additional genes that may play a role in BOR, and herein characterize the developmental role of one of them, Microspherule protein 1 (Mcrs1). We found that in cultured cells, Mcrs1 bound to Six1 and in both cultured cells and embryonic ectoderm reduced Six1-Eya1 transcriptional activation. Knock-down of Mcrs1 in embryos caused an expansion of the domains of neural plate genes and two genes expressed in both the neural plate and neural crest (zic1, zic2). In contrast, two other genes expressed in pre-migratory neural crest (foxd3, sox9) were primarily reduced. Cranial placode genes showed a mixture of expanded and diminished expression domains. At larval stages, loss of Mcrs1 resulted in a significant reduction of otic vesicle gene expression concomitant with a smaller otic vesicle volume. Experimentally increasing Mcrs1 above endogenous levels favored the expansion of neural border and neural crest gene domains over cranial placode genes; it also reduced otic vesicle gene expression but not otic vesicle volume. Co-expression of Mcrs1 and Six1 as well as double knock-down and rescue experiments establish a functional interaction between Mcrs1 and Six1 in the embryo, and demonstrate that this interaction has an important role in the development of craniofacial tissues including the otic vesicle.


Subject(s)
Embryo, Nonmammalian/embryology , Gene Expression Regulation, Developmental , Homeodomain Proteins/biosynthesis , RNA-Binding Proteins/biosynthesis , Skull/embryology , Xenopus Proteins/biosynthesis , Animals , Ectoderm/embryology , Neural Crest/embryology , Xenopus laevis
7.
Dis Model Mech ; 13(3)2020 03 03.
Article in English | MEDLINE | ID: mdl-31980437

ABSTRACT

Single-nucleotide mutations in human SIX1 result in amino acid substitutions in either the protein-protein interaction domain or the homeodomain, and cause ∼4% of branchio-otic (BOS) and branchio-oto-renal (BOR) cases. The phenotypic variation between patients with the same mutation, even within affected members of the same family, make it difficult to functionally distinguish between the different SIX1 mutations. We made four of the BOS/BOR substitutions in the Xenopus Six1 protein (V17E, R110W, W122R, Y129C), which is 100% identical to human in both the protein-protein interaction domain and the homeodomain, and expressed them in embryos to determine whether they cause differential changes in early craniofacial gene expression, otic gene expression or otic morphology. We confirmed that, similar to the human mutants, all four mutant Xenopus Six1 proteins access the nucleus but are transcriptionally deficient. Analysis of craniofacial gene expression showed that each mutant causes specific, often different and highly variable disruptions in the size of the domains of neural border zone, neural crest and pre-placodal ectoderm genes. Each mutant also had differential effects on genes that pattern the otic vesicle. Assessment of the tadpole inner ear demonstrated that while the auditory and vestibular structures formed, the volume of the otic cartilaginous capsule, otoliths, lumen and a subset of the hair cell-containing sensory patches were reduced. This detailed description of the effects of BOS/BOR-associated SIX1 mutations in the embryo indicates that each causes subtle changes in gene expression in the embryonic ectoderm and otocyst, leading to inner ear morphological anomalies.


Subject(s)
Branchio-Oto-Renal Syndrome/genetics , Gene Expression Regulation, Developmental , Homeodomain Proteins/genetics , Mutation/genetics , Skull/embryology , Amino Acid Sequence , Animals , Ear , HEK293 Cells , Homeodomain Proteins/chemistry , Homeodomain Proteins/metabolism , Humans , Neural Crest/metabolism , Otolithic Membrane/metabolism , Protein Tyrosine Phosphatases/metabolism , Transcription, Genetic , Xenopus Proteins/genetics , Xenopus Proteins/metabolism , Xenopus laevis/embryology , Xenopus laevis/genetics
8.
J Inherit Metab Dis ; 42(6): 1088-1096, 2019 11.
Article in English | MEDLINE | ID: mdl-31177541

ABSTRACT

Abundance of urea cycle enzymes in the liver is regulated by dietary protein intake. Although urea cycle enzyme levels rise in response to a high-protein (HP) diet, signaling networks that sense dietary protein intake and trigger changes in expression of urea cycle genes have not been identified. The aim of this study was to identify signaling pathway(s) that respond to changes in protein intake and regulate expression of urea cycle genes in mice and human hepatocytes. Mice were adapted to either HP or low-protein diets followed by isolation of liver protein and mRNA and integrated analysis of the proteomic and transcriptomic data. HP diet led to increased expression of mRNA and enzymes in amino acid degradation pathways and decreased expression of mRNA and enzymes in carbohydrate and fat metabolism, which implicated adenosine monophosphate-activated protein kinase (AMPK) as a possible regulator. Primary human hepatocytes, treated with 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR) an activator of AMPK, were used to test whether AMPK regulates expression of urea cycle genes. The abundance of carbamoylphosphate synthetase 1 and ornithine transcarbamylase mRNA increased in hepatocytes treated with AICAR, which supports a role for AMPK signaling in regulation of the urea cycle. Because AMPK is either a target of drugs used to treat type-2 diabetes, these drugs might increase the expression of urea cycle enzymes in patients with partial urea cycle disorders, which could be the basis of a new therapeutic approach.


Subject(s)
AMP-Activated Protein Kinases/metabolism , Dietary Proteins/pharmacology , Enzymes/genetics , Urea/metabolism , Aminoimidazole Carboxamide/analogs & derivatives , Aminoimidazole Carboxamide/pharmacology , Animals , Cells, Cultured , Dietary Proteins/administration & dosage , Enzymes/drug effects , Enzymes/metabolism , Gene Expression Regulation, Enzymologic/drug effects , Hepatocytes/drug effects , Hepatocytes/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Ribonucleotides/pharmacology , Signal Transduction/drug effects , Signal Transduction/genetics
9.
Dev Biol ; 446(1): 68-79, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30529252

ABSTRACT

The specialized sensory organs of the vertebrate head are derived from thickened patches of cells in the ectoderm called cranial sensory placodes. The developmental program that generates these placodes and the genes that are expressed during the process have been studied extensively in a number of animals, yet very little is known about how these genes regulate one another. We previously found via a microarray screen that Six1, a known transcriptional regulator of cranial placode fate, up-regulates Irx1 in ectodermal explants. In this study, we investigated the transcriptional relationship between Six1 and Irx1 and found that they reciprocally regulate each other throughout cranial placode and otic vesicle formation. Although Irx1 expression precedes that of Six1 in the neural border zone, its continued and appropriately patterned expression in the pre-placodal region (PPR) and otic vesicle requires Six1. At early PPR stages, Six1 expands the Irx1 domain, but this activity subsides over time and changes to a predominantly repressive effect. Likewise, Irx1 initially expands Six1 expression in the PPR, but later represses it. We also found that Irx1 and Sox11, a known direct target of Six1, reciprocally affect each other. This work demonstrates that the interactions between Six1 and Irx1 are continuous during PPR and placode development and their transcriptional effects on one another change over developmental time.


Subject(s)
Ear, Inner/metabolism , Gene Expression Regulation, Developmental , Homeodomain Proteins/genetics , Nerve Tissue Proteins/genetics , Neural Plate/metabolism , Transcription Factors/genetics , Xenopus Proteins/genetics , Animals , Ear, Inner/cytology , Ear, Inner/embryology , Ectoderm/cytology , Ectoderm/embryology , Ectoderm/metabolism , Embryo, Nonmammalian/cytology , Embryo, Nonmammalian/embryology , Embryo, Nonmammalian/metabolism , Head/embryology , Homeodomain Proteins/metabolism , In Situ Hybridization , Nerve Tissue Proteins/metabolism , Neural Plate/cytology , Neural Plate/embryology , SOXC Transcription Factors/genetics , SOXC Transcription Factors/metabolism , Transcription Factors/metabolism , Xenopus Proteins/metabolism , Xenopus laevis
SELECTION OF CITATIONS
SEARCH DETAIL
...