Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Genomics ; 22(6): 468-483, 2021 Dec 30.
Article in English | MEDLINE | ID: mdl-35340358

ABSTRACT

Aims: The aim of the present study was to evaluate the performance of 'high'-'low' yielding pyramided lines (PLs), having the same combinations of qDTYs in Samba Mahsuri, MR219 and IR64-Sub1 genetic backgrounds, and to understand the genetic interactions among QTL and/with genetic background affecting grain yield. Background: Epistasis regulates the expression of traits governed by several major/minor genes/QTL. Multiple pyramided lines (PLs) with the same grain yield QTL (qDTYs) combinations but possessing grain yield variability under different levels of reproductive stage drought stress were identified in different rice genetic backgrounds at International Rice Research Institute (IRRI). Objectives: The objectives of the present study were to evaluate the performance pyramided lines (PLs) with drought QTL in the backgrounds of Samba Mahsuri, MR219 and IR64-Sub1 under reproductive stage drought stress (RS) and NS (non-stress) conditions, to understand the effect of epistatic interactions among qDTYs and with genetic background on GY under the differential level of stress and to identify the promising drought-tolerant lines with high yield under drought and higher background recovery in different genetic backgrounds. Methods: The experiments were conducted in 2015 DS (dry season), 2015 WS (wet season) and 2017 DS at IRRI, Los Baños, Philippines, in a transplanted lowland ecosystem under lowland severe stress (LSS), lowland moderate stress (LMS) and lowland non-stress (LNS). The experiments were laid out in alpha lattice design with two replications. Results: Several digenic interactions were found in different genetic backgrounds, 13 interactions in Samba Mahsuri, 11 in MR219 and 20 in IR64-Sub1 backgrounds. Among all digenic interactions, one QTL × QTL interaction, 17 QTL × background and 26 background × background interactions resulted in GY reduction in low yielding PLs in different genetic backgrounds under LSS or LMS. Negative interaction of qDTY3.1 , qDTY4.1 and qDTY9.1 with background markers and background × background interactions caused up to 15% GY reduction compared to the high yielding PLs under LMS in the Samba Mahsuri PLs. In MR219 PLs, the negative interaction of qDTY2.2 , qDTY3.2 , qDTY4.1 and qDTY12.1 with the background marker interval RM314-RM539, RM273-RM349 and RM445-RM346, RM473D-RM16, respectively resulted 52% GY reduction compared to the high yielding PLs under LSS. In IR64-Sub1 PLs, qDTY6.1 interacted with background loci at RM16-RM135, RM228-RM333, RM202-RM287 and RM415-RM558A marker interval under LSS and at RM475-RM525 marker interval under LMS, causing GY reduction to 58% compared to the high yielding PLs. Conclusion: High yielding PLs in Samba Mahsuri (IR 99734:1-33-69-1-22-6), MR219 (IR 99784-156-87-2-4-1) and IR64-Sub1 (IR 102784:2-89-632-2-1-2) backgrounds without any negative interactions were identified. The identified selected promising PLs may be used as potential drought-tolerant donors or may be released as varieties for drought-prone ecosystems in different countries.

2.
Sci Rep ; 10(1): 13073, 2020 08 04.
Article in English | MEDLINE | ID: mdl-32753648

ABSTRACT

Occurrence of multiple abiotic stresses in a single crop season has become more frequent than before. Most of the traditional donors possessing tolerance to abiotic stresses are tall, low-yielding with poor grain quality. To facilitate efficient use of complex polygenic traits in rice molecular breeding research, we undertook development of introgression lines in background of high-yielding, semi-dwarf varieties with good grain quality. The study reports the development and evaluations of over 25,000 introgression lines in eleven elite rice genetic backgrounds for improvement of yield under multiple abiotic-stresses such as drought, flood, high/low temperature. The developed introgression lines within each genetic background are near isogenic/recombinant inbred lines to their recipient recurrent parent with 50 to 98% background recovery and additionally carry QTLs/genes for abiotic stresses. The multiple-stress tolerant pyramided breeding lines combining high yield under normal situation and good yield under moderate to severe reproductive-stage drought, semi-dwarf plant type with good grain quality traits have been developed. The introgression lines in dwarf backgrounds open new opportunity to improve other varieties without any linkage drag as well as facilitate cloning of QTLs, identification and functional characterization of candidate genes, mechanisms associated with targeted QTLs and the genetic networks underlying complex polygenic traits.

3.
Sci Rep ; 9(1): 2616, 2019 02 22.
Article in English | MEDLINE | ID: mdl-30796339

ABSTRACT

Epistatic interactions of QTLs with the genetic background and QTL-QTL interaction plays an important role in the phenotypic performance of introgression lines developed through genomic-assisted breeding (GAB). In this context, NIL pairs developed with various drought QTL (qDTY) combinations in the genetic background of IR64, TDK1-Sub1 and Savitri backgrounds were utilized to study the interactions. Multi-season phenotyping of NIL pairs harboring similar qDTY combinations provided contrasting performance for grain yield under drought (RS) (classified as high and low yielding NILs) but nearly similar performance under non-stress(NS) conditions. Genome wide genotyping data revealed a total of 16, 5 and 6 digenic interactions were detected under RS conditions in low yielding NILs of IR64, TDK1-Sub1 and Savitri respectively while no significant interaction was found in high yielding NILs under RS and NS conditions in any of the genetic backgrounds used in this study. It is evident from this study that existence of epistatic interactions between QTLs with genetic background, QTL-QTL interaction and interactions among background markers loci itself on different chromosomes influences the expression of a complex trait such as grain yield under drought. The generated information will be useful in all the GAB program of across the crops for precise breeding.


Subject(s)
Droughts , Epistasis, Genetic , Oryza/genetics , Oryza/physiology , Quantitative Trait Loci/genetics , Seeds/growth & development , Stress, Physiological/genetics , Flowers/physiology , Inbreeding , Oryza/anatomy & histology , Phenotype , Seeds/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...