Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Enzymes ; 54: 171-201, 2023.
Article in English | MEDLINE | ID: mdl-37945171

ABSTRACT

In late November 2019, Prof. Lina M. Obeid passed away from cancer, a disease she spent her life researching and studying its intricate molecular underpinnings. Along with her husband, Prof. Yusuf A. Hannun, Obeid laid down the foundations of sphingolipid biochemistry and oversaw its remarkable evolution over the years. Lipids are a class of macromolecules that are primarily associated with cellular architecture. In fact, lipids constitute the perimeter of the cell in such a way that without them, there cannot be cells. Hence, much of the early research on lipids identified the function of this class of biological molecules as merely structural. Nevertheless, unlike proteins, carbohydrates, and nucleic acids, lipids are elaborately diverse as they are not made up of monomers in polymeric forms. This diversity in structure is clearly mirrored by functional pleiotropy. In this chapter, we focus on a major subset of lipids, sphingolipids, and explore their historic rise from merely inert structural components of plasma membranes to lively and necessary signaling molecules that transmit various signals and control many cellular processes. We will emphasize the works of Lina Obeid since she was an integral pillar of the sphingolipid research world.


Subject(s)
Neoplasms , Sphingolipids , Humans , Sphingolipids/analysis , Sphingolipids/chemistry , Sphingolipids/metabolism , Cell Membrane/chemistry , Cell Membrane/metabolism , Neoplasms/metabolism
2.
Cell Rep ; 42(9): 113081, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37689067

ABSTRACT

Sphingolipids have key functions in membrane structure and cellular signaling. Ceramide is the central molecule of the sphingolipid metabolism and is generated by ceramide synthases (CerS) in the de novo pathway. Despite their critical function, mechanisms regulating CerS remain largely unknown. Using an unbiased proteomics approach, we find that the small heat shock protein 27 (Hsp27) interacts specifically with CerS1 but not other CerS. Functionally, our data show that Hsp27 acts as an endogenous inhibitor of CerS1. Wild-type Hsp27, but not a mutant deficient in CerS1 binding, inhibits CerS1 activity. Additionally, silencing of Hsp27 enhances CerS1-generated ceramide accumulation in cells. Moreover, phosphorylation of Hsp27 modulates Hsp27-CerS1 interaction and CerS1 activity in acute stress-response conditions. Biologically, we show that Hsp27 knockdown impedes mitochondrial function and induces lethal mitophagy in a CerS1-dependent manner. Overall, we identify an important mode of CerS1 regulation and CerS1-mediated mitophagy through protein-protein interaction with Hsp27.


Subject(s)
Ceramides , HSP27 Heat-Shock Proteins , Ceramides/metabolism , HSP27 Heat-Shock Proteins/genetics , Mitochondria/metabolism , Mitophagy , Sphingolipids/metabolism , Humans
3.
Front Physiol ; 14: 1229108, 2023.
Article in English | MEDLINE | ID: mdl-38235387

ABSTRACT

Metabolic pathways are complex and intertwined. Deficiencies in one or more enzymes in a given pathway are directly linked with genetic diseases, most of them having devastating manifestations. The metabolic pathways undertaken by sphingolipids are diverse and elaborate with ceramide species serving as the hubs of sphingolipid intermediary metabolism and function. Sphingolipids are bioactive lipids that serve a multitude of cellular functions. Being pleiotropic in function, deficiency or overproduction of certain sphingolipids is associated with many genetic and chronic diseases. In this up-to-date review article, we strive to gather recent scientific evidence about sphingolipid metabolism, its enzymes, and regulation. We shed light on the importance of sphingolipid metabolism in a variety of genetic diseases and in nervous and immune system ailments. This is a comprehensive review of the state of the field of sphingolipid biochemistry.

4.
J Lipid Res ; 63(6): 100225, 2022 06.
Article in English | MEDLINE | ID: mdl-35568252

ABSTRACT

Sphingosine-1-phosphate (S1P) is a sphingolipid metabolite that serves as a potent extracellular signaling molecule. Metabolic regulation of extracellular S1P levels impacts key cellular activities through altered S1P receptor signaling. Although the pathway through which S1P is degraded within the cell and thereby eliminated from reuse has been previously described, the mechanism used for S1P cellular uptake and the subsequent recycling of its sphingoid base into the sphingolipid synthesis pathway is not completely understood. To identify the genes within this S1P uptake and recycling pathway, we performed a genome-wide CRISPR/Cas9 KO screen using a positive-selection scheme with Shiga toxin, which binds a cell-surface glycosphingolipid receptor, globotriaosylceramide (Gb3), and causes lethality upon internalization. The screen was performed in HeLa cells with their sphingolipid de novo pathway disabled so that Gb3 cell-surface expression was dependent on salvage of the sphingoid base of S1P taken up from the medium. The screen identified a suite of genes necessary for S1P uptake and the recycling of its sphingoid base to synthesize Gb3, including two lipid phosphatases, PLPP3 (phospholipid phosphatase 3) and SGPP1 (S1P phosphatase 1). The results delineate a pathway in which plasma membrane-bound PLPP3 dephosphorylates extracellular S1P to sphingosine, which then enters cells and is rephosphorylated to S1P by the sphingosine kinases. This rephosphorylation step is important to regenerate intracellular S1P as a branch-point substrate that can be routed either for dephosphorylation to salvage sphingosine for recycling into complex sphingolipid synthesis or for degradation to remove it from the sphingolipid synthesis pathway.


Subject(s)
Lysophospholipids , Sphingosine , HeLa Cells , Humans , Lysophospholipids/metabolism , Phosphoric Monoester Hydrolases/metabolism , Sphingolipids/metabolism , Sphingosine/analogs & derivatives
5.
J Biol Chem ; 295(13): 4341-4349, 2020 03 27.
Article in English | MEDLINE | ID: mdl-32029474

ABSTRACT

Sphingolipid biosynthesis generates lipids for membranes and signaling that are crucial for many developmental and physiological processes. In some cases, large amounts of specific sphingolipids must be synthesized for specialized physiological functions, such as during axon myelination. How sphingolipid synthesis is regulated to fulfill these physiological requirements is not known. To identify genes that positively regulate membrane sphingolipid levels, here we employed a genome-wide CRISPR/Cas9 loss-of-function screen in HeLa cells using selection for resistance to Shiga toxin, which uses a plasma membrane-associated glycosphingolipid, globotriaosylceramide (Gb3), for its uptake. The screen identified several genes in the sphingolipid biosynthetic pathway that are required for Gb3 synthesis, and it also identified the aryl hydrocarbon receptor (AHR), a ligand-activated transcription factor widely involved in development and physiology, as being required for Gb3 biosynthesis. AHR bound and activated the gene promoter of serine palmitoyltransferase small subunit A (SPTSSA), which encodes a subunit of the serine palmitoyltransferase that catalyzes the first and rate-limiting step in de novo sphingolipid biosynthesis. AHR knockout HeLa cells exhibited significantly reduced levels of cell-surface Gb3, and both AHR knockout HeLa cells and tissues from Ahr knockout mice displayed decreased sphingolipid content as well as significantly reduced expression of several key genes in the sphingolipid biosynthetic pathway. The sciatic nerve of Ahr knockout mice exhibited both reduced ceramide content and reduced myelin thickness. These results indicate that AHR up-regulates sphingolipid levels and is important for full axon myelination, which requires elevated levels of membrane sphingolipids.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Disease Resistance/genetics , Globosides/genetics , Receptors, Aryl Hydrocarbon/genetics , Serine C-Palmitoyltransferase/genetics , Sphingolipids/biosynthesis , Trihexosylceramides/genetics , Animals , CRISPR-Cas Systems/genetics , Gene Expression Regulation , Gene Knockout Techniques , Genome, Human/genetics , HeLa Cells , Humans , Lipid Metabolism/genetics , Lipids/biosynthesis , Lipids/genetics , Mice , Mice, Knockout , Shiga Toxin/pharmacology , Signal Transduction/genetics , Sphingolipids/genetics
6.
Elife ; 82019 12 27.
Article in English | MEDLINE | ID: mdl-31880535

ABSTRACT

Sphingolipids are membrane and bioactive lipids that are required for many aspects of normal mammalian development and physiology. However, the importance of the regulatory mechanisms that control sphingolipid levels in these processes is not well understood. The mammalian ORMDL proteins (ORMDL1, 2 and 3) mediate feedback inhibition of the de novo synthesis pathway of sphingolipids by inhibiting serine palmitoyl transferase in response to elevated ceramide levels. To understand the function of ORMDL proteins in vivo, we studied mouse knockouts (KOs) of the Ormdl genes. We found that Ormdl1 and Ormdl3 function redundantly to suppress the levels of bioactive sphingolipid metabolites during myelination of the sciatic nerve. Without proper ORMDL-mediated regulation of sphingolipid synthesis, severe dysmyelination results. Our data indicate that the Ormdls function to restrain sphingolipid metabolism in order to limit levels of dangerous metabolic intermediates that can interfere with essential physiological processes such as myelination.


Subject(s)
Membrane Proteins/genetics , Myelin Sheath/genetics , Sphingolipids/genetics , Animals , Ceramides/genetics , HeLa Cells , Humans , Lipid Metabolism/genetics , Lipogenesis/genetics , Mice , Mice, Knockout , Myelin Sheath/metabolism , Sciatic Nerve/growth & development , Sciatic Nerve/metabolism , Serine C-Palmitoyltransferase/antagonists & inhibitors , Serine C-Palmitoyltransferase/genetics , Signal Transduction/genetics , Sphingolipids/biosynthesis
7.
J Virol Methods ; 257: 69-72, 2018 07.
Article in English | MEDLINE | ID: mdl-29660384

ABSTRACT

Avian reovirus (ARV) causes significant economic losses to the poultry industry worldwide. The ARV proteins fall into three different classes based on their sizes:λ (large); µ (medium) and σ (small). σB, an outer capsid protein of the ARV contains group specific neutralizing epitopes and induces strong immune response in naturally infected chickens. This study describes the development of a rapid dot-enzyme linked immunosorbent assay (dot-ELISA) using recombinant σB protein antigen of 54 kDa (approx). The assay is rapid (4-5 h) and results can be read by the naked eye. Sixteen ARV positive serum samples (group A) produced strong reaction in the dot-ELISA while twenty of the ARV negative serum samples (group B) collected from SPF chickens showed no reaction. Seventy six randomly collected serum samples were tested with a commercial indirect ELISA kit and the in-house developed dot-ELISA. A total of sixty eight serum samples were found to be positive by indirect ELISA and sixty five serum samples were found to be positive by dot-ELISA. Therefore, using the commercial ELISA as the reference test, the dot-ELISA had a diagnostic sensitivity of 83.8% and specificity of 88.6%. This dot-ELISA can be used as a simple, reliable and inexpensive alternative to commercial ELISA kits for serodiagnosis of ARV where the facilities for standard ELISA are not available.


Subject(s)
Antibodies, Viral/blood , Antigens, Viral/immunology , Enzyme-Linked Immunosorbent Assay/methods , Orthoreovirus, Avian/isolation & purification , Poultry Diseases/diagnosis , Reoviridae Infections/veterinary , Animals , Chickens , Orthoreovirus, Avian/immunology , Poultry Diseases/virology , Reoviridae Infections/diagnosis , Sensitivity and Specificity
8.
J Lipid Res ; 55(12): 2521-31, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25332431

ABSTRACT

Sphingolipid levels are tightly regulated to maintain cellular homeostasis. During pathologic conditions such as in aging, inflammation, and metabolic and neurodegenerative diseases, levels of some sphingolipids, including the bioactive metabolite ceramide, are elevated. Sphingolipid metabolism has been linked to autophagy, a critical catabolic process in both normal cell function and disease; however, the in vivo relevance of the interaction is not well-understood. Here, we show that blocking autophagy in the liver by deletion of the Atg7 gene, which is essential for autophagosome formation, causes an increase in sphingolipid metabolites including ceramide. We also show that overexpression of serine palmitoyltransferase to elevate de novo sphingolipid biosynthesis induces autophagy in the liver. The results reveal autophagy as a process that limits excessive ceramide levels and that is induced by excessive elevation of de novo sphingolipid synthesis in the liver. Dysfunctional autophagy may be an underlying mechanism causing elevations in ceramide that may contribute to pathogenesis in diseases.


Subject(s)
Autophagy , Liver/metabolism , Microtubule-Associated Proteins/metabolism , Models, Biological , Serine C-Palmitoyltransferase/metabolism , Sphingolipids/metabolism , Animals , Autophagy-Related Protein 7 , Ceramides/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Humans , Liver/enzymology , Liver/ultrastructure , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic , Microscopy, Electron, Transmission , Microsomes, Liver/enzymology , Microsomes, Liver/metabolism , Microsomes, Liver/ultrastructure , Microtubule-Associated Proteins/genetics , Mutant Proteins/metabolism , Phagosomes/metabolism , Phagosomes/ultrastructure , Recombinant Fusion Proteins/metabolism , Serine C-Palmitoyltransferase/genetics
9.
Plant Cell ; 25(11): 4627-39, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24214397

ABSTRACT

Maintenance of sphingolipid homeostasis is critical for cell growth and programmed cell death (PCD). Serine palmitoyltransferase (SPT), composed of LCB1 and LCB2 subunits, catalyzes the primary regulatory point for sphingolipid synthesis. Small subunits of SPT (ssSPT) that strongly stimulate SPT activity have been identified in mammals, but the role of ssSPT in eukaryotic cells is unclear. Candidate Arabidopsis thaliana ssSPTs, ssSPTa and ssSPTb, were identified and characterized. Expression of these 56-amino acid polypeptides in a Saccharomyces cerevisiae SPT null mutant stimulated SPT activity from the Arabidopsis LCB1/LCB2 heterodimer by >100-fold through physical interaction with LCB1/LCB2. ssSPTa transcripts were more enriched in all organs and >400-fold more abundant in pollen than ssSPTb transcripts. Accordingly, homozygous ssSPTa T-DNA mutants were not recoverable, and 50% nonviable pollen was detected in heterozygous ssspta mutants. Pollen viability was recovered by expression of wild-type ssSPTa or ssSPTb under control of the ssSPTa promoter, indicating ssSPTa and ssSPTb functional redundancy. SPT activity and sensitivity to the PCD-inducing mycotoxin fumonisin B1 (FB1) were increased by ssSPTa overexpression. Conversely, SPT activity and FB1 sensitivity were reduced in ssSPTa RNA interference lines. These results demonstrate that ssSPTs are essential for male gametophytes, are important for FB1 sensitivity, and limit sphingolipid synthesis in planta.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Mycotoxins/pharmacology , Serine C-Palmitoyltransferase/metabolism , Sphingolipids/biosynthesis , Amino Acid Sequence , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Cell Death/drug effects , DNA, Bacterial , Fumonisins/pharmacology , Molecular Sequence Data , Mutation , Phylogeny , Plants, Genetically Modified , Pollen/genetics , Promoter Regions, Genetic , Saccharomyces cerevisiae/genetics , Serine C-Palmitoyltransferase/genetics , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...