Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
2.
Dalton Trans ; 47(33): 11358-11374, 2018 Aug 21.
Article in English | MEDLINE | ID: mdl-30059099

ABSTRACT

The synthesis and characterization of an oxidovanadium(iv) [VIVO(L)(acac)] (1) and of two dioxidovanadium(v) [VVO2(L')] (2) and [VVO2(L)] (2a) complexes of the Schiff base formed from the reaction of 4-(p-fluorophenyl) thiosemicarbazone with pyridine-2-aldehyde (HL) are described. The oxidovanadium(iv) species [VIVO(L)(acac)] (1) was synthesized by the reaction of VIVO(acac)2 with the thiosemicarbazone HL in refluxing ethanol. The recrystallization of [VIVO(L)(acac)] (1) in DMF, CH3CN or EtOH gave the same product i.e. the dioxidovanadium(v) complex [VVO2(L)] (2a); however, upon recrystallization of 1 in DMSO a distinct compound [VVO2(L')] (2) was formed, wherein the original ligand L- is transformed to a rearranged one, L'-. In the presence of DMSO the ligand in complex 1 is found to undergo methylation at the carbon centre attached to imine nitrogen (aldimine) and transformed to the corresponding VVO2-species through in situ reaction. The synthesized HL and the metal complexes were characterized by elemental analysis, IR, UV-Vis, NMR and EPR spectroscopy. The molecular structure of [VVO2(L')] (2) was determined by single crystal X-ray crystallography. The methylation of various other ligands and complexes prepared from different vanadium precursors under similar reaction conditions was also attempted and it was confirmed that the imine methylation observed is both ligand and metal precursor specific. Complexes 1 and 2 show in vitro insulin-like activity against insulin responsive L6 myoblast cells, higher than VIVO(acac)2, with complex 1 being more potent. In addition, the in vitro cytotoxicity studies of HL, and of complexes 1 and 2 against the MCF-7 and Vero cell lines were also done. The ligand is not cytotoxic and complex 2 is significantly more cytotoxic than 1. DAPI staining experiments indicate that an increase in the time of incubation and an increase of concentration of the complexes lead to the increase in cell death.

3.
Inorg Chem ; 57(10): 5767-5781, 2018 May 21.
Article in English | MEDLINE | ID: mdl-29741373

ABSTRACT

The synthesis of ethoxido-bridged dinuclear oxidovanadium(IV) complexes of the general formula (HNEt3)[(VOL1-3)2(µ-OEt)] (1-3) with the azo dyes 2-(2'-carboxy-5'-X-phenylazo)-4-methylphenol (H2L1, X = H; H2L2, X = NO2) and 2-(2'-carboxy-5'-Br-phenylazo)-2-naphthol (H2L3) as ligands is reported. The ligands differ in the substituents at the phenyl ring to probe their influence on the redox behavior, biological activity, and magnetochemistry of the complexes, for which the results are presented and discussed. All synthesized ligands and vanadium(IV) complexes have been characterized by various physicochemical techniques, namely, elemental analysis, electrospray ionization mass spectrometry, spectroscopic methods (UV/vis and IR), and cyclic voltammetry. X-ray crystallography of 1 and 3 revealed the presence of a twisted arrangement of the edged-shared bridging core unit. In agreement with the distorted nature of the twisted core, antiferromagnetic exchange interactions were observed between the vanadium(IV) centers of the dinuclear complexes with a superexchange mechanism operative. These results have been verified by DFT calculations. The complexes were also screened for their in vitro cytotoxicity against HeLa and HT-29 cancer cell lines. The results indicated that all the synthesized vanadium(IV) complexes (1-3) were cytotoxic in nature and were specific to a particular cell type. Complex 1 was found to be the most potent against HeLa cells (IC50 value 1.92 µM).


Subject(s)
Azo Compounds/chemistry , Coordination Complexes/chemistry , Magnetics , Phenanthridines/chemistry , Quantum Theory , Vanadium/chemistry , Anions , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Antineoplastic Agents/toxicity , Azo Compounds/pharmacology , Azo Compounds/toxicity , Cell Survival/drug effects , Coordination Complexes/pharmacology , Crystallography, X-Ray , HT29 Cells , HeLa Cells , Humans , Inhibitory Concentration 50 , Ligands , Molecular Structure , Oxidation-Reduction , Phenanthridines/toxicity , Vanadium/pharmacology , Vanadium/toxicity
4.
Inorg Chem ; 56(18): 11190-11210, 2017 Sep 18.
Article in English | MEDLINE | ID: mdl-28858483

ABSTRACT

Four novel dimeric bis-µ-imido bridged metal-metal bonded oxidomolybdenum(V) complexes [MoV2O2L'21-4] (1-4) (where L'1-4 are rearranged ligands formed in situ from H2L1-4) and a new mononuclear dioxidomolybdenum(VI) complex [MoVIO2L5] (5) synthesized from salen type N2O2 ligands are reported. This rare series of imido-bridged complexes (1-4) have been furnished from rearranged H3L'1-4 ligands, containing an aromatic diimine (o-phenylenediamine) "linker", where Mo assisted hydrolysis followed by -C═N bond cleavage of one of the arms of the ligand H2L1-4 took place. A monomeric molybdenum(V) intermediate species [MoVO(HL'1-4)(OEt)] (Id1-4) was generated in situ. The concomitant deprotonation and dimerization of two molybdenum(V) intermediate species (Id1-4) ultimately resulted in the formation of a bis-µ-imido bridge between the two molybdenum centers of [MoV2O2L'21-4] (1-4). The mechanism of formation of 1-4 has been discussed, and one of the rare intermediate monomeric molybdenum(V) species Id4 has been isolated in the solid state and characterized. The monomeric dioxidomolybdenum(VI) complex [MoVIO2L5] (5) was prepared from the ligand H2L5 where the aromatic "linker" was replaced by an aliphatic diimine (1,2-diaminopropane). All the ligands and complexes have been characterized by elemental analysis, IR, UV-vis spectroscopy, NMR, ESI-MS, and cyclic voltammetry, and the structural features of 1, 2, 4, and 5 have been solved by X-ray crystallography. The DNA binding and cleavage activity of 1-5 have been explored. The complexes interact with CT-DNA by the groove binding mode, and the binding constants range between 103 and 104 M-1. Fairly good photoinduced cleavage of pUC19 supercoiled plasmid DNA was exhibited by all the complexes, with 4 showing the most promising photoinduced DNA cleavage activity of ∼93%. Moreover, in vitro cytotoxic activity of all the complexes was evaluated by MTT assay, which reveals that the complexes induce cell death in MCF-7 (human breast adenocarcinoma) and HCT-15 (colon cancer) cell lines.


Subject(s)
Antineoplastic Agents/pharmacology , Coordination Complexes/pharmacology , DNA/drug effects , Molybdenum/pharmacology , Oxides/pharmacology , Salicylates/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cattle , Cell Death/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Crystallography, X-Ray , DNA/chemistry , Drug Screening Assays, Antitumor , Humans , Ligands , MCF-7 Cells , Models, Molecular , Molecular Structure , Molybdenum/chemistry , Oxides/chemistry , Salicylates/chemistry
5.
J Inorg Biochem ; 172: 110-121, 2017 07.
Article in English | MEDLINE | ID: mdl-28448877

ABSTRACT

Seven hexacoordinated cis-dioxidomolybdenum(VI) complexes [MoO2L1-7] (1-7) derived from various tetradentate diamino bis(phenolato) "salan" ligands, N,N'-dimethyl-N,N'-bis-(2-hydroxy-3-X-5-Y-6-Z-benzyl)-1,2-diaminoethane {(X=Br, Y=Me, Z=H (H2L1); X=Me, YCl, Z=H (H2L2); X=iPr, Y=Cl, Z=Me (H2L3)} and N,N'-bis-(2-hydroxy-3-X-5-Y-6-Z-benzyl)-1,2-diaminopropane {(X=Y=tBu, Z=H (H2L4); X=Y=Me, Z=H (H2L5); X=iPr, YCl, Z=Me (H2L6); X=Y=Br, Z=H (H2L7)} containing O-N donor atoms, have been isolated and structurally characterized. The formation of cis-dioxidomolybdenum(VI) complexes was confirmed by elemental analysis, IR, UV-vis and NMR spectroscopy, ESI-MS and cyclic voltammetry. X-ray crystallography showed the O2N2 donor set to define an octahedral geometry in each case. The complexes (1-7) were tested for their in vitro antiproliferative activity against HT-29 and HeLa cancer cell line. IC50 values of the complexes in HT-29 follow the order 6<7<<1<2<5<<3<4 while the order was 6<7<5<1<<3<4<2 in HeLa cells. Some of the complexes proved to be as active as the clinical referred drugs, and the greater potency of 6 and 7 (IC50 values of 6 are 2.62 and 10.74µM and that of 7 is 11.79 and 30.48µM in HT-29 and HeLa cells, respectively) may be dependent on the substituents in the salan ligand environment coordinated to the metal.


Subject(s)
Ligands , Molybdenum/chemistry , Organometallic Compounds , Cell Proliferation/drug effects , Cisplatin/chemistry , Cisplatin/pharmacology , Crystallography, X-Ray , HT29 Cells , HeLa Cells , Humans , Inhibitory Concentration 50 , Molecular Structure , Molybdenum/pharmacology , Organometallic Compounds/chemical synthesis , Organometallic Compounds/chemistry , Organometallic Compounds/pharmacology
6.
Inorg Chem ; 55(3): 1165-82, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-26789655

ABSTRACT

A series of mononuclear non-oxido vanadium(IV) [V(IV)(L(1-4))2] (1-4), oxidoethoxido vanadium(V) [V(V)O(L(1-4))(OEt)] (5-8), and dinuclear µ-oxidodioxidodivanadium(V) [V(V)2O3(L(1))2] (9) complexes with tridentate aroylazine ligands are reported [H2L(1) = 2-furoylazine of 2-hydroxy-1-acetonaphthone, H2L(2) = 2-thiophenoylazine of 2-hydroxy-1-acetonaphthone, H2L(3) = 1-naphthoylazine of 2-hydroxy-1-acetonaphthone, H2L(4) = 3-hydroxy-2-naphthoylazine of 2-hydroxy-1-acetonaphthone]. The complexes are characterized by elemental analysis, by various spectroscopic techniques, and by single-crystal X-ray diffraction (for 2, 3, 5, 6, 8, and 9). The non-oxido V(IV) complexes (1-4) are quite stable in open air as well as in solution, and DFT calculations allow predicting EPR and UV-vis spectra and the electronic structure. The solution behavior of the [V(V)O(L(1-4))(OEt)] compounds (5-8) is studied confirming the formation of at least two different types of V(V) species in solution, monomeric corresponding to 5-8, and µ-oxidodioxidodivanadium [V(V)2O3(L(1-4))2] compounds. The µ-oxidodioxidodivanadium compound [V(V)2O3(L(1))2] (9), generated from the corresponding mononuclear complex [V(V)O(L(1))(OEt)] (5), is characterized in solution and in the solid state. The single-crystal X-ray diffraction analyses of the non-oxido vanadium(IV) compounds (2 and 3) show a N2O4 binding set and a trigonal prismatic geometry, and those of the V(V)O complexes 5, 6, and 8 and the µ-oxidodioxidodivanadium(V) (9) reveal that the metal center is in a distorted square pyramidal geometry with O4N binding sets. For the µ-oxidodioxidodivanadium species in equilibrium with 5-8 in CH2Cl2, no mixed-valence complexes are detected by chronocoulometric and EPR studies. However, upon progressive transfer of two electrons, two distinct monomeric V(IV)O species are detected and characterized by EPR spectroscopy and DFT calculations.

7.
J Inorg Biochem ; 144: 1-12, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25575303

ABSTRACT

Three dioxidovanadium(V) complexes [VO2L(1-3)] (1-3) [HL(1)=1-napthoyl hydrazone of 2-acetyl pyridine, HL(2)=2-furoyl hydrazone of 2-acetyl pyridine and H2L(3)=isonicotinoyl hydrazone of 2-hydroxy benzaldehyde] have been reported. All the complexes were characterized by various spectroscopy (IR, UV-visible and NMR) and the molecular structures of 1 and 2 were characterized by single crystal X-ray diffraction technique. Structural report established five-coordinate geometries, distorted toward square pyramidal for each of 1 and 2, based on a tridentate -O,N,N coordinating anion and two oxido-O atoms. The experimental results show that the complexes interact with calf-thymus DNA (CT-DNA) possibly by a groove binding mode, with binding constants of ~10(5)M(-1). All complexes show good photo-induced cleavage of pUC19 supercoiled plasmid DNA with complex 1 showing the highest photo-induced DNA cleavage activity of ~68%. 1-3 also exhibit moderate binding affinity in the range of 10(3)-10(4)M(-1) towards bovine serum albumin (BSA), while all the complexes show good photo-induced BSA cleavage activity. Moreover the antiproliferative activity of all these complexes was studied, which reveal all compounds are significantly cytotoxic towards the HeLa cell line.


Subject(s)
Cell Survival/drug effects , Coordination Complexes/metabolism , Coordination Complexes/pharmacology , DNA Cleavage , DNA/metabolism , Hydrazones/metabolism , Hydrazones/pharmacology , Serum Albumin, Bovine/metabolism , Vanadium Compounds/metabolism , Vanadium Compounds/pharmacology , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Crystallography, X-Ray , HeLa Cells , Humans , Hydrazones/chemical synthesis , Hydrazones/chemistry , Ligands , Molecular Structure , Protein Binding , Schiff Bases/chemistry , Ultraviolet Rays , Vanadium Compounds/chemistry , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...