Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Alzheimers Dement (N Y) ; 7(1): e12224, 2021.
Article in English | MEDLINE | ID: mdl-35005205

ABSTRACT

INTRODUCTION: The benefit and risk of aerobic exercise among older people harboring advanced cerebral small vessel disease (CSVD) upon cognition, mood, and motor functions are unknown. METHODS: This rater-blind randomized trial examined effects of a 24-week aerobic exercise training (60 min/session, twice/week) upon clinical (cognition, mood, motor functions) and hemodynamic (pulse pressure [PP], blood pressure [BP], pulsatility index) measures in older people harboring moderate to severe CSVD, as evidenced by confluent white matter hyperintensity and/or ≥2 lacunes on magnetic resonance imaging. We further investigated interactions between treatment conditions and hemodynamics measures. RESULTS: Fifty-three and 54 subjects were randomized into the active and control group, respectively. There was no between-group difference in any of the clinical outcomes. The active group had a greater between-group reduction in systolic BP and PP than the control group. Within-group comparison showed that global cognition of the active group remained similar at end of the study compared to baseline, whereas it declined significantly in the control group. We observed "diverging" interaction effects in that greater reduction in systolic BP/PP was associated with greater improvement in memory functions and global cognition but worsening in processing speed in the active group. Side effects were comparable between the two groups. DISCUSSION: Future study should investigate the mechanisms of the diverging impacts of aerobic exercise upon different cognitive domains so that the benefit-risk ratio of aerobic exercise in older people harboring more advanced CSVD can be better defined.

2.
Ann Neurol ; 88(5): 933-945, 2020 11.
Article in English | MEDLINE | ID: mdl-32827221

ABSTRACT

OBJECTIVE: To determine whether priming with 1 or 25Hz repetitive transcranial magnetic stimulation (rTMS) will enhance the benefits from treadmill training up to 3 months postintervention in people with Parkinson disease (PD), and to evaluate the underlying changes in cortical excitability. METHODS: This randomized double-blind, placebo-controlled trial was conducted between October 2016 and December 2018. Fifty-one participants with PD were randomized to receive 12 sessions of rTMS (25Hz, 1Hz, or sham) followed by treadmill training. All participants were assessed at baseline and 1 day, 1 month, and 3 months postintervention. Primary outcome was fastest walking speed, and secondary outcomes were timed up-and-go test (TUG), dual-task TUG (DT-TUG), motor section of the Movement Disorder Society-Unified Parkinson's Disease Rating Scale (MDS-UPDRS-III), and electrophysiological evaluation of cortical excitability by TMS. RESULTS: The 1 and 25Hz rTMS groups produced a greater improvement in fastest walking speed at 1 day and 3 months postintervention than the sham group. Only the 1 and 25Hz rTMS groups sustained the improvements in TUG, and had a significant improvement in DT-TUG and MDS-UPDRS-III for up to 3 months. Behavioral improvements correlated with increased cortical silent period and short-interval intracortical inhibition in both groups receiving real rTMS. INTERPRETATION: Priming with 1 and 25Hz rTMS can augment the benefits of treadmill training and lead to long-term motor improvement up to 3 months postintervention. The motor improvement at follow-up was associated with a normalization of cortical excitability, which in turn suggests an alteration of the homeostatic plasticity range. Rebalancing cortical excitability by rTMS appears critical for plasticity induction. ANN NEUROL 2020;88:933-945.


Subject(s)
Exercise Therapy/methods , Gait , Parkinson Disease/rehabilitation , Transcranial Magnetic Stimulation/methods , Aged , Double-Blind Method , Electroencephalography , Electromyography , Female , Humans , Male , Middle Aged , Neuronal Plasticity , Treatment Outcome , Walking Speed
SELECTION OF CITATIONS
SEARCH DETAIL
...