Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters











Database
Language
Publication year range
1.
J Hazard Mater ; 227-228: 118-25, 2012 Aug 15.
Article in English | MEDLINE | ID: mdl-22633881

ABSTRACT

Heavy metal removal using nano zero-valent iron (NZVI) has drawn growing attention due to the ease of application and high removal efficiency. However, uncertainties regarding its fate and transport in subsurface environments have raised concerns that require further exploration. In this study, aggregation, sedimentation, and Cr/As desorption of three types of NZVIs were investigated under various conditions. It was found that the aggregation behavior of the NZVIs differed from one another in regard to reaction time and ionic strength, associated with the respective critical size for sedimentation. Sedimentation of NZVIs was positively related to the concentrations and average particle sizes. The sedimentation kinetics of NZVI followed two concomitant processes, i.e., (1) direct sedimentation of larger particles, and (2) initial aggregation and then sedimentation of smaller particles. When loaded with Cr/As, NZVIs tended to deposit faster, possibly due to the precipitation of Cr/As onto the nanoparticle surfaces resulting in larger particle sizes. Moreover, desorption of Cr/As from Cr/As loaded NZVIs was detected in the presence of typical groundwater ions, as well as natural organic matter, and poses a potential risk to the subsurface environment. The desorption of Cr was linearly related to the release of iron ions, while As desorption was mitigated when the immobilization of Cr increased.


Subject(s)
Arsenic/chemistry , Chromium/chemistry , Iron/chemistry , Metal Nanoparticles/chemistry , Water Pollutants, Chemical/chemistry , Adsorption , Environmental Restoration and Remediation , Groundwater
2.
Environ Sci Technol ; 45(23): 10148-54, 2011 Dec 01.
Article in English | MEDLINE | ID: mdl-22035382

ABSTRACT

The effects of the construction methods, materials of reactive media and groundwater constituents on the environmental impacts of a permeable reactive barrier (PRB) were evaluated using life cycle assessment (LCA). The PRB is assumed to be installed at a simulated site contaminated by either Cr(VI) alone or Cr(VI) and As(V). Results show that the trench-based construction method can reduce the environmental impacts of the remediation remarkably compared to the caisson-based method due to less construction material consumption by the funnel. Compared to using the zerovalent iron (Fe(0)) and quartz sand mixture, the use of the Fe(0) and iron oxide-coated sand (IOCS) mixture can reduce the environmental impacts. In the presence of natural organic matter (NOM) in groundwater, the environmental impacts generated by the reactive media were significantly increased because of the higher usage of Fe(0). The environmental impacts are lower by using the Fe(0) and IOCS mixture in the groundwater with NOM, compared with using the Fe(0) and quartz sand mixture. Since IOCS can enhance the removal efficiency of Cr(VI) and As(V), the usage of the Fe(0) can be reduced, which in turn reduces the impacts induced by the reactive media.


Subject(s)
Environmental Monitoring/methods , Groundwater/analysis , Environmental Restoration and Remediation , Water Pollutants, Chemical
3.
Water Res ; 45(19): 6575-84, 2011 Dec 01.
Article in English | MEDLINE | ID: mdl-22018698

ABSTRACT

A column study was conducted using a combination of zero-valent iron (Fe(0)) and iron oxide-coated sand (IOCS) for removing Cr(VI) and As(V) from groundwater. The removal efficiency and mechanism of Cr(VI) and As(V), the effects of humic acid (HA), and the various configurations of Fe(0) and IOCS were investigated. The results showed that the use of an Fe(0) and IOCS mixture in a completely mixed configuration can achieve the highest removal of both Cr(VI) and As(V), whilst the effects of HA were marginal in using these reactive materials. The solid phase analysis revealed the occurrence of the synergistic effect in these reactive materials as Fe(2+) can be adsorbed onto the IOCS and transform the iron oxides to magnetite, providing more reactive surface area for Cr(VI) reduction and reducing the passivation on the Fe(0). As(V) can then be removed by adsorption onto these iron corrosion products. HA can be adsorbed onto the IOCS so that the impacts of the deposition of HA aggregates on the Fe(0) surface can be reduced, thus enhancing the Fe(0) corrosion.


Subject(s)
Arsenates/isolation & purification , Chromates/isolation & purification , Ferric Compounds/chemistry , Groundwater/chemistry , Humic Substances/analysis , Iron/chemistry , Silicon Dioxide/chemistry , Microscopy, Electron, Scanning , Photoelectron Spectroscopy , Water Pollutants, Chemical/isolation & purification , X-Ray Diffraction
4.
Chemosphere ; 84(2): 234-40, 2011 Jun.
Article in English | MEDLINE | ID: mdl-21530997

ABSTRACT

This study investigated the removal kinetics and mechanisms of Cr(VI) and As(V) by Fe(0) in the presence of fulvic acid (FA) and humic acid (HA) by means of batch experiments. The focus was on the involvements of FA and HA in redox reactions, metal complexation, and iron corrosion product aggregation in the removal of Cr(VI) and As(V) removal by Fe(0). Synthetic groundwater was used as the background electrolyte to simulate typical groundwater. The results showed faster Cr(VI) removal in the presence of HA compared to FA. Fluorescence spectroscopy revealed that no redox reaction occurred in the FA and HA. The results of the speciation modeling indicate that the free Fe(II) concentration was higher in the presence of HA, resulting in a higher removal rate of Cr(VI). However, the removal of As(V) was inhibited in the HA solution. Speciation modeling showed that the concentration of dissolved metal-natural organic matter (metal-NOM) complexes significantly affected the aggregation of the iron corrosion products which in turn affected the removal of As(V). The aggregation was found to be induced by gel-bridging of metal-NOM with the iron corrosion products. The effects of metal-NOM on the aggregation of the iron corrosion products were further confirmed by TEM studies. Larger sizes of iron corrosion products were formed in the FA solution compared to HA solution. This study can shed light on understanding the relationships between the properties of NOM (especially the content of metal-binding sites) and the removal of Cr(VI) and As(V) by Fe(0).


Subject(s)
Arsenic/chemistry , Benzopyrans/chemistry , Chromium/chemistry , Humic Substances , Iron/chemistry , Environmental Restoration and Remediation/methods , Fresh Water/chemistry , Oxidation-Reduction , Water Pollutants, Chemical/chemistry
5.
Environ Pollut ; 159(2): 377-82, 2011 Feb.
Article in English | MEDLINE | ID: mdl-21130550

ABSTRACT

The combination of zero-valent iron (Fe(0)) and iron oxide-coated sand (IOCS) was used to remove Cr(VI) and As(V) from groundwater in this study. The efficiency and the removal mechanism of Cr(VI) and As(V) by using this combination, with the influence of humic acid (HA), were investigated using batch experiments. Results showed that, compared to using Fe(0) or IOCS alone, the Fe(0)-IOCS can perform better on the removal of both Cr(VI) and As(V). Metal extraction studies showed that As(V) was mainly removed by IOCS and iron corrosion products while Cr(VI) was mainly removed by Fe(0) and its corrosion products. Competition was found between Cr(VI) and As(V) for the adsorption sites on the iron corrosion products. HA had shown insignificant effects on Cr(VI) removal but some effects on As(V) removal kinetics. As(V) was adsorbed on IOCS at the earlier stage, but adsorbed/coprecipitated with the iron corrosion products at the later stage.


Subject(s)
Arsenates/chemistry , Chromates/chemistry , Environmental Restoration and Remediation/methods , Ferric Compounds/chemistry , Humic Substances/analysis , Water Pollutants, Chemical/chemistry , Adsorption , Environmental Restoration and Remediation/instrumentation , Kinetics , Silicon Dioxide/chemistry , Water Purification
6.
Water Res ; 43(17): 4296-304, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19580986

ABSTRACT

The effects of hardness (Ca(2+)) and alkalinity (HCO(3)(-)) on arsenic(V) removal from humic acid (HA)-deficient and HA-rich groundwater by zero-valent iron (Fe(0)) were investigated using batch experiments. Arsenic, in general, is removed from groundwater possibly by adsorption and co-precipitation with the iron corrosion products. However, in the co-presence of HCO(3)(-) and Ca(2+), the removal rate of arsenic increased with increasing concentrations of either Ca(2+) or HCO(3)(-). It was observed that the removal of arsenic was significantly enhanced by the formation of CaCO(3) as a nucleation seed for the growth of large iron (hydr)oxide particles. In the co-existence of Ca(2+), HCO(3)(-) and HA, the presence of HA diminished the positive role of Ca(2+) due to the formation of Fe-humate complexes in solution and delaying of the formation of CaCO(3). As a result, the formation of the large iron (hydr)oxide particles was inhibited in the earlier stage which, in turn, affected the removal of arsenic. However, after the formation of CaCO(3) and the subsequent growth of such particles, the presence of large iron (hydr)oxide particles resulted in the rapid removing of arsenic and Fe-humate by adsorption and/or co-precipitation.


Subject(s)
Arsenic/isolation & purification , Calcium Carbonate/chemistry , Humic Substances , Iron/chemistry , Water Pollutants, Chemical/isolation & purification , Hydrogen-Ion Concentration , X-Ray Diffraction
7.
Water Res ; 43(9): 2540-8, 2009 May.
Article in English | MEDLINE | ID: mdl-19321187

ABSTRACT

The interactions of co-present Cr(VI) and As(V), and the influences of humic acid and bicarbonate in the process of Cr(VI) and As(V) removal by Fe(0) were investigated in a batch setting using simulated groundwater with 5 mM NaCl, 1 mM Na(2)SO(4), and 0.8 mM CaCl(2) as background electrolytes at an initial pH value of 7. Cr(VI) and As(V) were observed to be subject to different impacts induced by co-existing As(V) or Cr(VI), humic acid and bicarbonate, originating from their distinct removal mechanisms by Fe(0). Cr(VI) removal is a reduction-dominated process, whereas As(V) removal principally involves adsorption onto iron corrosion products. Experimental results showed that Cr(VI) removal was not affected by the presence of As(V) and humic acid. However, As(V) removal appeared to be inhibited by co-present Cr(VI). When the Cr(VI) concentration was 2, 5, and 10 mg/L, in the absence of humic acid and bicarbonate, As(V) removal rate constants were decreased by 27.9%, 49.0%, and 61.2%, respectively, which probably resulted from competition between Cr(VI) and As(V) for adsorption sites of the iron corrosion products. Furthermore, the presence of humic acid significantly varied As(V) removal kinetics by delaying the formation and aggregation of iron hydroxides due to the formation of soluble Fe-humate complexes and stably dispersed fine iron hydroxides colloids. In the presence of bicarbonate, both Cr(VI) and As(V) removal was increased and the inhibitory effect of Cr(VI) on As(V) removal was suppressed, resulting from the buffering effects and the promoted iron corrosion induced by bicarbonate, and the formation of CaCO(3) in solution, which enhanced As(V) adsorption.


Subject(s)
Arsenates/isolation & purification , Bicarbonates , Chromates/isolation & purification , Humic Substances , Water Pollutants, Chemical/isolation & purification , Adsorption , Hydrogen-Ion Concentration , Iron/chemistry , Mass Spectrometry , Water Purification/methods
8.
Chemosphere ; 75(2): 156-62, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19157491

ABSTRACT

The effects of humic acid (HA) on As(V) removal by zero-valent iron (Fe(0)) from groundwater, associated with corrosion products analyses, were investigated using batch experiments. It was found that arsenic was rapidly removed from groundwater possibly due to its adsorption and co-precipitation with the corrosion products of Fe(0). The removal rate of arsenic by Fe(0) was inhibited in the presence of HA probably because of the formation of soluble Fe-humate in groundwater which hindered the production of iron precipitates. A longer reaction time was then required for arsenic removal. Such an influence of HA on arsenic removal increased with increasing HA concentration from 5 to 25mgL(-1). The binding capacity of HA for dissolved Fe was estimated to be about 0.75mg Femg(-1) HA. When the complexation of HA with dissolved Fe was saturated, further corrosion of Fe(0) would produce precipitates, which significantly accelerated the removal of arsenic from groundwater via adsorption and co-precipitation with the corrosion products. Iron (hydr)oxides such as maghemite, lepidocrocite, and magnetite were characterized by XRD analyses as the corrosion products, while As(V) was found on the surface of these corrosion products as detected by fourier transform infrared spectrometry and X-ray photoelectron spectroscopy.


Subject(s)
Arsenic/chemistry , Arsenic/isolation & purification , Humic Substances , Iron/chemistry , Water Purification/methods , Spectroscopy, Fourier Transform Infrared , Spectrum Analysis , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/isolation & purification , X-Rays
SELECTION OF CITATIONS
SEARCH DETAIL