Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicol Ind Health ; 40(3): 75-90, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38153120

ABSTRACT

Perovskite solar cells display potential as a renewable energy source because of their high-power conversion efficiency. However, there is limited understanding regarding the potential impact of perovskite on human health and the ecosystem. In this study, two sets of male Wistar albino rats received 35 injections of perovskite composite at a dosage of 0.372 mg/kg body weight. The animals underwent thorough examinations, encompassing morphometric, hematological, biochemical, histological, and behavioral analyses. Liver, kidney, and testis biopsies were processed and examined histologically. Additionally, two groups of mice (perovskite-treated and control mice, each with n = 10) underwent three behavioral tests: the Elevated Zero Maze test, Marble Burying test, and Light-Dark Box test. Perovskite-treated rats displayed a significant increase in levels of aspartate aminotransferase, alanine aminotransferase, alkaline phosphatase, triglycerides, cholesterol, creatinine, blood urea nitrogen, white blood cells, and platelets. However, total bilirubin levels decreased, with no significant alteration in albumin values. Furthermore, exposure to perovskite composite resulted in a slight decrease in lactate dehydrogenase and red blood cell count. Histopathological examination revealed hepatic hydropic degeneration, Kupffer cells hypertrophy and hyperplasia, and renal hydropic degeneration, while testicular tissues remained unaffected. Moreover, behavioral changes were observed in perovskite-treated mice, including depression, anxiety, and compulsive burying activity. These findings suggest that exposure to perovskite can lead to significant hematological and biochemical changes, as well as hepatorenal histopathological alterations and behavioral changes. Additionally, chronic exposure to perovskite materials may induce structural and functional alterations in vital organs.


Subject(s)
Calcium Compounds , Ecosystem , Liver , Oxides , Titanium , Rats , Mice , Male , Humans , Animals , Rats, Wistar , Liver/pathology , Liver Function Tests
2.
Biosensors (Basel) ; 12(12)2022 Dec 06.
Article in English | MEDLINE | ID: mdl-36551097

ABSTRACT

Prostate cancer is one of the most frequently diagnosed male malignancies and can be detected by prostate-specific antigen (PSA) as a biomarker. To detect PSA, several studies have proposed using antibodies, which are not economical and require a long reaction time. In this study, we propose to use self-assembled thiolated single-strand DNA on electrodes functionalized by multi-walled carbon nanotubes (MWCNT) modified with gold nanoparticles (AuNPs) to realize a low-cost label-free electrochemical biosensor. In this regard, the PSA aptamer was immobilized via electrostatic adsorption on the surface of a screen-printed MWCNT/AuNPs electrode. The immobilization process was enhanced due to the presence of Au nanoparticles on the surface of the electrode. Surface characterization of the electrode at different stages of modification was performed by electrochemical impedance spectroscopy (EIS), atomic force microscopy (AFM) and Fourier transform infrared spectroscopy (FTIR) and contact angle for surface tension properties. The results showed an increase in surface roughness due to the absorbance of the aptamer on the electrode surfaces. The developed sensor has an extended linear range of 1-100 ng/mL, and a very low limit of detection down to 1 pg/mL. In addition, the reaction has a binding time of only five minutes on the developed electrodes. Investigations of the biosensor selectivity against several substances revealed an efficient selectivity for PSA detection. With this approach, low-cost biosensors with high sensitivity can be realized which have a wide linearity range and a low limit of detection, which are necessary for the early detection of prostate cancer.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Metal Nanoparticles , Nanotubes, Carbon , Prostatic Neoplasms , Male , Humans , Prostate-Specific Antigen , Gold/chemistry , Nanotubes, Carbon/chemistry , Metal Nanoparticles/chemistry , Early Detection of Cancer , Prostatic Neoplasms/diagnosis , Electrodes , Aptamers, Nucleotide/chemistry , Biosensing Techniques/methods , Electrochemical Techniques/methods , Limit of Detection
3.
Nanomaterials (Basel) ; 12(7)2022 Apr 01.
Article in English | MEDLINE | ID: mdl-35407300

ABSTRACT

Recently, there has been a growing interest in using natural products as treatment alternatives in several diseases. Nerolidol is a natural product which has been shown to have protective effects in several conditions. The low water solubility of nerolidol and many other natural products limits their delivery to the body. In this research, a drug delivery system composed of alginate and chitosan was fabricated and loaded with nerolidol to enhance its water solubility. The chitosan-alginate nanoparticles were fabricated using a new method including the tween 80 pre-gelation, followed by poly-ionic crosslinking between chitosan negative and alginate positive groups. Several characterization techniques were used to validate the fabricated nanoparticles. The molecular interactions between the chitosan, alginate, and nerolidol molecules were confirmed using the Fourier transform infrared spectroscopy. The ultraviolet spectroscopy showed an absorbance peak of the blank nanoparticles at 200 nm and for the pure nerolidol at 280 nm. Using both scanning and transmission electron microscopy, the nanoparticles were found to be spherical in shape with an average size of 12 nm and 35 nm for the blank chitosan-alginate nanoparticles and the nerolidol-loaded chitosan-alginate nanoparticles, respectively. The nanoparticles were also shown to have a loading capacity of 51.7% and an encapsulation efficiency of 87%. A controlled release profile of the loaded drug for up to 28 h using an in vitro model was also observed, which is more efficient than the free form of nerolidol. In conclusion, chitosan-alginate nanoparticles and nerolidol loaded chitosan-alginate nanoparticles were successfully fabricated and characterized to show potential encapsulation and delivery using an in vitro model.

4.
Biomed Microdevices ; 23(4): 46, 2021 09 21.
Article in English | MEDLINE | ID: mdl-34546397

ABSTRACT

The development of an Aptamer based biosensor for the selective detection of human epidermal growth factor receptor 2 (HER2) with high sensitivity and specificity was achieved. A screen-printed carbon electrode was used in the scope of this work. The HER2 Aptamer was immobilized via electrostatic adsorption on the surface of a screen-printed electrode, which was modified with Au Nanoparticles (~ 20 nm diameter) to support the Aptamer immobilization. The Aptasensor was extensively investigated using Cyclic voltammetry, Differential pulse voltammetry, Electrochemical impedance spectroscopy, Fourier transform infrared spectroscopy and Atomic force microscopy. The Aptasensor exhibits a fast response with a binding time of only 5 min and shows a log-linear response over a wide concentration range of 0.001-100 ng/mL. Moreover, it has high sensitivity and enhanced detection limit reaching 52.85 µA/ng/mL, and 0.001 ng/mL, respectively, with a relative standard deviation < 5%. The Aptasensor selectivity was studied by using different interfering substances, and the results demonstrate that the Aptasensor is efficient for the detection of HER2 with approximately 8% extent of the interference.


Subject(s)
Aptamers, Nucleotide , Biosensing Techniques , Breast Neoplasms , Metal Nanoparticles , Breast Neoplasms/diagnosis , Electrochemical Techniques , Electrodes , Female , Gold , Humans , Limit of Detection
5.
Appl Opt ; 57(10): 2441-2445, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29714227

ABSTRACT

In this paper, a general method is proposed in order to develop a special absorber profile that receives sunlight from parabolic reflectors uniformly. Different parameters were taken into consideration while performing the simulation including reflector focal length, collector length, and concentration ratio. The total power reflected to the absorber was calculated by accounting for the Fresnel angular dependency and the shadowing effect by the absorber. Furthermore, a verification method based on the ray tracing technique was also developed in order to verify that uniform illumination was achieved. The uniformity of the sunlight flux onto the absorber is expected to improve solar system efficiency and extend its life service. Therefore, the validated absorber profile design in this theoretical work can be useful for applications which employ parabolic concentrators with the concern of reaching higher performance by achieving a uniform concentration ratio on the absorber.

SELECTION OF CITATIONS
SEARCH DETAIL
...