Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 34(45)2023 Aug 21.
Article in English | MEDLINE | ID: mdl-37524070

ABSTRACT

The development of low cost efficient catalysts for oxygen evolution reaction (OER) is still a obstacle to realize the commercialization of electrocatalytic water splitting. Herein, interface engineering and heteroatom doping is adopted to synthesize iron and vanadium doped nickel sulfide on nickel foam via hydrothermal method followed by hydrogen treatment to create sulfur defects. The optimized nanoflower-like FeVNi3S2-x/NF is an efficient OER electrocatalyst that outperforms many of the reported transition metals catalysts. Benefiting from abundant sulfur defects and the synergistic effect of heteroatom doping, FeVNi3S2-x/NF exhibits an ultralow overpotential of 230 mV to reach a current density of 100 mA cm-2, a rapid reaction kinetics with a small Tafel slope of 46.6 mV dec-1, and a stable long-term durability in 1 M KOH. Experimental results and characterizations confirm that sulfur vacancies together with the synergistic effect from multiple heteroatom doping can effectively regulate the electronic structure, resulting in increased electrical conductivity and electrochemically active surface area, thus enhancing OER performance. Furthermore,in situRaman spectroscopy reveals that, the reconstitution amorphous nickel oxyhydroxide (NiOOH) on the catalyst surface is responsible for catalyzing the OER reaction. This work represents a promising methodology to synthesize low-cost and highly active OER electrocatalysts.

SELECTION OF CITATIONS
SEARCH DETAIL
...