Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Proteomics Clin Appl ; 12(3): e1700135, 2018 05.
Article in English | MEDLINE | ID: mdl-29426060

ABSTRACT

PURPOSE: For the vast majority of ovarian cancer patients, optimal surgical debulking remains a key prognostic factor associated with improved survival. A standardized, biomarker-based test, to preoperatively discriminate benign from malignant disease and inform appropriate patient triage, is highly desirable. However, no fit-for-purpose biomarkers have yet been identified. EXPERIMENTAL DESIGN: We conducted a pilot study consisting of 40 patient urine samples (20 from each group), using label-free quantitative (LFQ) mass spectrometry, to identify potential biomarker candidates in urine from individual ovarian cancer patients. To validate these changes, we used parallel reaction monitoring (PRM) to investigate their abundance in an independent validation cohort (n = 20) of patient urine samples. RESULTS: LFQ analyses identified 4394 proteins (17 027 peptides) in a discovery set of 20 urine samples. Twenty-three proteins were significantly elevated in the malignant patient group compared to patients with benign disease. Several proteins, including LYPD1, LYVE1, PTMA, and SCGB1A1 were confirmed to be enriched in the urine of ovarian cancer patients using PRM. We also identified the established ovarian cancer biomarkers WFDC2 (HE4) and mesothelin (MSLN), validating our approach. CONCLUSIONS AND CLINICAL RELEVANCE: This is the first application of a LFQ-PRM workflow to identify and validate ovarian cancer-specific biomarkers in patient urine samples.


Subject(s)
Biomarkers, Tumor/urine , Neoplasm Proteins/urine , Ovarian Neoplasms/urine , Female , Humans , Mesothelin , Pilot Projects , Reproducibility of Results
2.
Cancers (Basel) ; 11(1)2018 Dec 31.
Article in English | MEDLINE | ID: mdl-30602661

ABSTRACT

Ovarian cancers (OCs) are the most lethal gynaecological malignancy, with high levels of relapse and acquired chemo-resistance. Whilst the tumour⁻immune nexus controls both cancer progression and regression, the lack of an appropriate system to accurately model tumour stage and immune status has hampered the validation of clinically relevant immunotherapies and therapeutic vaccines to date. To address this need, we stably integrated the near-infrared phytochrome iRFP720 at the ROSA26 genomic locus of ID8 mouse OC cells. Intrabursal ovarian implantation into C57BL/6 mice, followed by regular, non-invasive fluorescence imaging, permitted the direct visualization of tumour mass and distribution over the course of progression. Four distinct phases of tumour growth and dissemination were detectable over time that closely mimicked clinical OC progression. Progression-related changes in immune cells also paralleled typical immune profiles observed in human OCs. Specifically, we observed changes in both the CD8+ T cell effector (Teff):regulatory (Treg) ratio, as well as the dendritic cell (DC)-to-myeloid derived suppressor cell (MDSC) ratio over time across multiple immune cell compartments and in peritoneal ascites. Importantly, iRFP720 expression had no detectible influence over immune profiles. This new model permits non-invasive, longitudinal tumour monitoring whilst preserving host⁻tumour immune interactions, and allows for the pre-clinical assessment of immune profiles throughout disease progression as well as the direct visualization of therapeutic responses. This simple fluorescence-based approach provides a useful new tool for the validation of novel immuno-therapeutics against OC.

3.
mBio ; 8(5)2017 09 19.
Article in English | MEDLINE | ID: mdl-28928213

ABSTRACT

African trypanosomiasis is caused by infection with the protozoan parasite Trypanosoma brucei During infection, this pathogen divides rapidly to high density in the bloodstream of its mammalian host in a manner similar to that of leukemia. Like all eukaryotes, T. brucei has a cell cycle involving the de novo synthesis of DNA regulated by ribonucleotide reductase (RNR), which catalyzes the conversion of ribonucleotides into their deoxy form. As an essential enzyme for the cell cycle, RNR is a common target for cancer chemotherapy. We hypothesized that inhibition of RNR by genetic or pharmacological means would impair parasite growth in vitro and prolong the survival of infected animals. Our results demonstrate that RNR inhibition is highly effective in suppressing parasite growth both in vitro and in vivo These results support drug discovery efforts targeting the cell cycle, not only for African trypanosomiasis but possibly also for other infections by eukaryotic pathogens.IMPORTANCE The development of drugs to treat infections with eukaryotic pathogens is challenging because many key virulence factors have closely related homologues in humans. Drug toxicity greatly limits these development efforts. For pathogens that replicate at a high rate, especially in the blood, an alternative approach is to target the cell cycle directly, much as is done to treat some hematologic malignancies. The results presented here indicate that targeting the cell cycle via inhibition of ribonucleotide reductase is effective at killing trypanosomes and prolonging the survival of infected animals.


Subject(s)
Cell Cycle/drug effects , Enzyme Inhibitors/therapeutic use , Hydroxyurea/therapeutic use , Ribonucleotide Reductases/antagonists & inhibitors , Trypanocidal Agents/therapeutic use , Trypanosoma brucei brucei/drug effects , Trypanosomiasis, African/drug therapy , Animals , Drug Discovery , Enzyme Inhibitors/pharmacology , Humans , Hydroxyurea/administration & dosage , Hydroxyurea/pharmacology , Mice , Ribonucleotide Reductases/metabolism , Trypanocidal Agents/pharmacology , Trypanosoma brucei brucei/enzymology , Trypanosoma brucei brucei/genetics , Trypanosoma brucei brucei/physiology , Trypanosomiasis, African/parasitology
4.
PLoS One ; 8(12): e81187, 2013.
Article in English | MEDLINE | ID: mdl-24312535

ABSTRACT

Chagas heart disease, the leading cause of heart failure in Latin America, results from infection with the parasite Trypanosoma cruzi. Although T. cruzi disseminates intravascularly, how the parasite contends with the endothelial barrier to escape the bloodstream and infect tissues has not been described. Understanding the interaction between T. cruzi and the vascular endothelium, likely a key step in parasite dissemination, could inform future therapies to interrupt disease pathogenesis. We adapted systems useful in the study of leukocyte transmigration to investigate both the occurrence of parasite transmigration and its determinants in vitro. Here we provide the first evidence that T. cruzi can rapidly migrate across endothelial cells by a mechanism that is distinct from productive infection and does not disrupt monolayer integrity or alter permeability. Our results show that this process is facilitated by a known modulator of cellular infection and vascular permeability, bradykinin, and can be augmented by the chemokine CCL2. These represent novel findings in our understanding of parasite dissemination, and may help identify new therapeutic strategies to limit the dissemination of the parasite.


Subject(s)
Capillary Permeability , Chagas Cardiomyopathy/metabolism , Endothelium, Vascular , Human Umbilical Vein Endothelial Cells , Trypanosoma cruzi/metabolism , Animals , Bradykinin/metabolism , Chemokine CCL2/metabolism , Endothelium, Vascular/metabolism , Endothelium, Vascular/parasitology , Female , Human Umbilical Vein Endothelial Cells/metabolism , Human Umbilical Vein Endothelial Cells/parasitology , Humans , Male , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...