Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(2): 2449-2456, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38117013

ABSTRACT

GaAs nanowires are promising candidates for emerging devices in a broad field of applications (e.g., nanoelectronics, photodetection, or photoconversion). These nanostructures benefit greatly from a vertical integration, as it allows for the exhibition of the entire nanowire surface. However, one of the main challenges related to vertical integration is the conception of an efficient method to create low resistive contacts at nanoscale without degrading the device performance. In this article, we propose a complementary metal-oxide-semiconductor (CMOS)-compatible approach to form alloyed contacts at the extremities of vertical GaAs nanowires. Ni-based and Pd-based alloys on different vertical GaAs nanostructures have been characterized by structural and chemical analyses to identify the phase and to study the growth mechanisms involved at the nanoscale. It is shown that the formation of the Ni3GaAs alloy on top of nanowires following the epitaxial relation Ni3GaAs(0001)∥GaAs(111) leads to a pyramidal shape with four faces. Finally, guidelines are presented to tune the shape of this alloy by varying the initial metal thickness and nanowire diameters. It will facilitate the fabrication of a nanoalloy structure with tailored shape characteristics to precisely align with a designated application.

2.
Nanomaterials (Basel) ; 12(7)2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35407246

ABSTRACT

Germanane is a two-dimensional material consisting of stacks of atomically thin germanium sheets. It's easy and low-cost synthesis holds promise for the development of atomic-scale devices. However, to become an electronic-grade material, high-quality layered crystals with good chemical purity and stability are needed. To this end, we studied the electrical transport of annealed methyl-terminated germanane microcrystallites in both high vacuum and ultrahigh vacuum. Scanning electron microscopy of crystallites revealed two types of behavior which arise from the difference in the crystallite chemistry. While some crystallites are hydrated and oxidized, preventing the formation of good electrical contact, the four-point resistance of oxygen-free crystallites was measured with multiple tips scanning tunneling microscopy, yielding a bulk transport with resistivity smaller than 1 Ω·cm. When normalized by the crystallite thickness, the resistance compares well with the resistance of hydrogen-passivated germanane flakes found in the literature. Along with the high purity of the crystallites, a thermal stability of the resistance at 280 °C makes methyl-terminated germanane suitable for complementary metal oxide semiconductor back-end-of-line processes.

3.
Microsc Microanal ; 26(1): 76-85, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31918773

ABSTRACT

In this paper, an improved quantification technique for STEM/EDX measurements of 1D dopant profiles based on the Cliff-Lorimer equation is presented. The technique uses an iterative absorption correction procedure based on density models correlating the local mass density and composition of the specimen. Moreover, a calibration and error estimation procedure based on linear regression and error propagation is proposed in order to estimate the total measurement error in the dopant density. The proposed approach is applied to the measurement of the As profile in a nanodevice test structure. For the calibration, two crystalline Si specimens implanted with different As doses have been used, and the calibration of the Cliff-Lorimer coefficients has been carried out using Rutherford Back Scattering measurements. The As profile measurement has been carried out on an FinFET test structure, showing that quantitative results can be obtained in the nanometer scale and for dopant atomic densities lower than 1%. Using the proposed approach, the measurement error and detection limit for our experimental setup are calculated and the possibility to improve this limit by increasing the observation time is discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...