Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 14(8)2022 Apr 18.
Article in English | MEDLINE | ID: mdl-35454947

ABSTRACT

The involvement of oxylipins, metabolites of polyunsaturated fatty acids, in cancer pathogenesis was known long ago, but only the development of the high-throughput methods get the opportunity to study oxylipins on a system level. The study aimed to elucidate alterations in oxylipin metabolism as characteristics of breast cancer patients. We compared the ultra-high-performance liquid chromatography-mass spectrometry (UPLC-MS/MS) oxylipin profile signatures in the blood plasma of 152 healthy volunteers (HC) and 169 patients with different stages of breast cancer (BC). To integrate lipidomics, transcriptomics, and genomics data, we analyzed a transcriptome of 10 open database datasets obtained from tissues and blood cells of BC patients and SNP data for 33 genes related to oxylipin metabolism. We identified 18 oxylipins, metabolites of omega-3 or omega-6 polyunsaturated fatty acids, that were differentially expressed between BCvsHC patients, including anandamide, prostaglandins and hydroxydocosahexaenoic acids. DEGs analysis of tissue and blood samples from BC patients revealed that 19 genes for oxylipin biosynthesis change their expression level, with CYP2C19, PTGS2, HPGD, and FAAH included in the list of DEGs in the analysis of transcriptomes and the list of SNPs associated with BC. Results allow us to suppose that oxylipin signatures reflect the organism's level of response to the disease. Our data regarding changes in oxylipins at the system level show that oxylipin profiles can be used to evaluate the early stages of breast cancer.

2.
J Chromatogr B Analyt Technol Biomed Life Sci ; 1130-1131: 121808, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-31669631

ABSTRACT

A new sample extraction protocol was developed for pharmacokinetic studies of dabigatran with high-performance liquid chromatography separation - electrospray ionization time-of-flight mass spectrometry analysis. After protein precipitation with acetonitrile, free dabigatran and its metabolites are separated into water phase by water-dichloromethane liquid-liquid extraction to purify the sample from proteins and endogenous lipophilic compounds. Chromatographic separation was achieved on an Agilent Zorbax SB-CN column (150 × 4.6 mm, 5 µm)) using 0.1% aqueous solution of formic acid and acetonitrile (80:20) as the mobile phase. Agilent Zorbax SB-CN column was selected to improve sample resolution and to avoided early elution of dabigatran previously seen when using a C18 column. The extended calibration curve was constructed from 5 to 1000 ng/L while precision and accuracy were assessed at four levels across the linear dynamic ranges. Within-run precision was <5.6% and the between-run precision was <3.9%. The method accuracy ranged from 89.8% to 104.4%. The developed method was successfully applied to 30 patient samples to evaluate antithrombotic efficacy and anticoagulant activity of dabigatran following knee endoprosthesis surgery.


Subject(s)
Chromatography, High Pressure Liquid/methods , Dabigatran/blood , Dabigatran/isolation & purification , Tandem Mass Spectrometry/methods , Dabigatran/pharmacokinetics , Drug Monitoring , Humans , Limit of Detection , Linear Models , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...