Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharm Sci ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38692487

ABSTRACT

Antibacterial therapy with phage-encoded endolysins or their modified derivatives with improved antibacterial, biochemical and pharmacokinetic properties is one of the most promising strategies that can supply existing antibacterial drugs array. Gram-negative bacteria-induced infections treatment is especially challenging because of rapidly spreading bacterial resistance. We have developed modified endolysin LysECD7-SMAP with a significant antibacterial activity and broad spectra of action against gram-negative bacteria. Endolysin was formulated in a bactericidal gel for topical application with pronounced effectivity in local animal infectious models. Here we present preclinical safety studies and pharmacokinetics of LysECD7-SMAP-based gel. We have detected LysECD7-SMAP in the skin and underlying muscle at therapeutic concentrations when the gel is applied topically to intact or injured skin. Moreover, the protein does not enter the bloodstream, and has no systemic bioavailability, assuming no systemic adverse effects. In studies of general toxicology, local tolerance, and immunotoxicology it was approved that LysECD7-SMAP gel local application results in the absence of toxic effects after single and multiple administration. Thus, LysECD7-SMAP-containing gel has appropriate pharmacokinetics and can be considered as safe that supports the initiation of the phase I clinical trials of novel antibacterial drug intending to treat acute wound infections caused by resistant gram-negative bacteria.

2.
Front Microbiol ; 12: 748718, 2021.
Article in English | MEDLINE | ID: mdl-34721353

ABSTRACT

Endolysin-based therapeutics are promising antibacterial agents and can successfully supplement the existing antibacterial drugs array. It is specifically important in the case of Gram-negative pathogens, e.g., ESKAPE group bacteria, which includes Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species, and are highly inclined to gain multiple antibiotic resistance. Despite numerous works devoted to the screening of new lytic enzymes and investigations of their biochemical properties, there are significant breaches in some aspects of their operating characteristics, including safety issues of endolysin use. Here, we provide a comprehensive study of the antimicrobial efficacy aspects of four Gram-negative bacteria-targeting endolysins LysAm24, LysAp22, LysECD7, and LysSi3, their in vitro and in vivo activity, and their biological safety. These endolysins possess a wide spectrum of action, are active against planktonic bacteria and bacterial biofilms, and are effective in wound and burn skin infection animal models. In terms of safety, these enzymes do not contribute to the development of short-term resistance, are not cytotoxic, and do not significantly affect the normal intestinal microflora in vivo. Our results provide a confident base for the development of effective and safe candidate dosage forms for the treatment of local and systemic infections caused by Gram-negative bacterial species.

3.
Viruses ; 12(5)2020 05 15.
Article in English | MEDLINE | ID: mdl-32429199

ABSTRACT

Surfaces of implanted medical devices are highly susceptible to biofilm formation. Bacteria in biofilms are embedded in a self-produced extracellular matrix that inhibits the penetration of antibiotics and significantly contributes to the mechanical stability of the colonizing community which leads to an increase in morbidity and mortality rate in clinical settings. Therefore, new antibiofilm approaches and substances are urgently needed. In this paper, we test the efficacy of a broad-range recombinant endolysin of the coliphage LysECD7 against forming and mature biofilms. We used a strong biofilm producer-Klebsiella pneumoniae Ts 141-14 clinical isolate. In vitro investigation of the antibacterial activity was performed using the standard biofilm assay in microtiter plates. We optimized the implantable diffusion chamber approach in order to reach strong biofilm formation in vivo avoiding severe consequences of the pathogen for the animals and to obtain a well-reproducible model of implant-associated infection. Endolysin LysECD7 significantly reduced the biofilm formation and was capable of degrading the preformed biofilm in vitro. The animal trials on the preformed biofilms confirmed these results. Overall, our results show that LysECD7 is a promising substance against clinically relevant biofilms.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biofilms/drug effects , Endopeptidases/pharmacology , Klebsiella pneumoniae/drug effects , Animals , Anti-Bacterial Agents/administration & dosage , Anti-Bacterial Agents/isolation & purification , Biofilms/growth & development , Coliphages/enzymology , Coliphages/genetics , Disease Models, Animal , Drug Resistance, Multiple, Bacterial , Endopeptidases/administration & dosage , Endopeptidases/genetics , Endopeptidases/isolation & purification , Female , Klebsiella Infections/microbiology , Klebsiella Infections/prevention & control , Klebsiella pneumoniae/physiology , Microbial Sensitivity Tests , Prosthesis-Related Infections/microbiology , Prosthesis-Related Infections/prevention & control , Rats , Recombinant Proteins/administration & dosage , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Recombinant Proteins/pharmacology
4.
Biomolecules ; 10(3)2020 03 12.
Article in English | MEDLINE | ID: mdl-32178329

ABSTRACT

The use of recombinant endolysins is a promising approach for antimicrobial therapy capable of counteracting the spread of antibiotic-resistant strains. To obtain the necessary biotechnological product, diverse peptide tags are often fused to the endolysin sequence to simplify enzyme purification, improve its ability to permeabilize the bacterial outer membrane, etc. We compared the effects of two different types of protein modifications on endolysin LysECD7 bactericidal activity in vitro and demonstrated that it is significantly modulated by specific permeabilizing antimicrobial peptides, as well as by widely used histidine tags. Thus, the tags selected for the study of endolysins and during the development of biotechnological preparations should be used with the appropriate precautions to minimize false conclusions about endolysin properties. Further, modifications of LysECD7 allowed us to obtain a lytic enzyme that was largely devoid of the disadvantages of the native protein and was active over the spectra of conditions, with high in vitro bactericidal activity not only against Gram-negative, but also against Gram-positive, bacteria. This opens up the possibility of developing effective antimicrobials based on N-terminus sheep myeloid peptide of 29 amino acids (SMAP)-modified LysECD7 that can be highly active not only during topical treatment but also for systemic applications in the bloodstream and tissues.


Subject(s)
Anti-Bacterial Agents , Endopeptidases/chemistry , Gram-Negative Bacteria/growth & development , Gram-Positive Bacteria/growth & development , Pore Forming Cytotoxic Proteins , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Pore Forming Cytotoxic Proteins/chemistry , Pore Forming Cytotoxic Proteins/pharmacology , Sheep
5.
Int J Mol Sci ; 20(8)2019 Apr 12.
Article in English | MEDLINE | ID: mdl-31013736

ABSTRACT

We produced and isolated tobacco mosaic virus-like particles (TMV VLPs) from bacteria, which are devoid of infectious genomes, and found that they have a net negative charge and can bind calcium ions. Moreover, we showed that the TMV VLPs could associate strongly with nanocellulose slurry after a simple mixing step. We sequentially exposed nanocellulose alone or slurries mixed with the TMV VLPs to calcium and phosphate salts and utilized physicochemical approaches to demonstrate that bone mineral (hydroxyapatite) was deposited only in nanocellulose mixed with the TMV VLPs. The TMV VLPs confer mineralization properties to the nanocellulose for the generation of new composite materials.


Subject(s)
Calcification, Physiologic , Calcium , Cellulose , Durapatite , Nanocomposites , Phosphates , Biotechnology , Calcium/chemistry , Cellulose/chemistry , Durapatite/chemistry , Nanocomposites/chemistry , Nanocomposites/ultrastructure , Phosphates/chemistry , Tobacco Mosaic Virus
6.
Viruses ; 11(3)2019 03 21.
Article in English | MEDLINE | ID: mdl-30901901

ABSTRACT

The extremely rapid spread of multiple-antibiotic resistance among Gram-negative pathogens threatens to move humankind into the so-called "post-antibiotic era" in which the most efficient and safe antibiotics will not work. Bacteriophage lysins represent promising alternatives to antibiotics, as they are capable of digesting bacterial cell wall peptidoglycans to promote their osmotic lysis. However, relatively little is known regarding the spectrum of lysin bactericidal activity against Gram-negative bacteria. In this study, we present the results of in vitro activity assays of three putative and newly cloned Myoviridae bacteriophage endolysins (LysAm24, LysECD7, and LysSi3). The chosen proteins represent lysins with diverse domain organization (single-domain vs. two-domain) and different predicted mechanisms of action (lysozyme vs. peptidase). The enzymes were purified, and their properties were characterized. The enzymes were tested against a panel of Gram-negative clinical bacterial isolates comprising all Gram-negative representatives of the ESKAPE group. Despite exhibiting different structural organizations, all of the assayed lysins were shown to be capable of lysing Pseudomonas aeruginosa, Acinetobacter baumannii, Klebsiella pneumoniae, Escherichia coli, and Salmonella typhi strains. Less than 50 µg/mL was enough to eradicate growing cells over more than five orders of magnitude. Thus, LysAm24, LysECD7, and LysSi3 represent promising therapeutic agents for drug development.


Subject(s)
Anti-Bacterial Agents/pharmacology , Endopeptidases/pharmacology , Gram-Negative Bacteria/drug effects , Myoviridae/chemistry , Acinetobacter baumannii/drug effects , Endopeptidases/chemistry , Escherichia coli/drug effects , Klebsiella pneumoniae/drug effects , Pseudomonas aeruginosa/drug effects
7.
Front Plant Sci ; 6: 984, 2015.
Article in English | MEDLINE | ID: mdl-26617624

ABSTRACT

We genetically modified tobacco mosaic virus (TMV) to surface display a characterized peptide with potent metal ion binding and reducing capacity (MBP TMV), and demonstrate that unlike wild type TMV, this construct can lead to the formation of discrete 10-40 nm gold nanoparticles when mixed with 3 mM potassium tetrachloroaurate. Using a variety of analytical physicochemical approaches it was found that these nanoparticles were crystalline in nature and stable. Given that the MBP TMV can produce metal nanomaterials in the absence of chemical reductants, it may have utility in the green production of metal nanomaterials.

SELECTION OF CITATIONS
SEARCH DETAIL
...