Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Polymers (Basel) ; 16(7)2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38611186

ABSTRACT

The search for novel materials with enhanced characteristics for the advancement of flexible electronic devices and energy harvesting devices is currently a significant concern. Multiferroics are a prominent example of energy conversion materials. The magnetoelectric conversion in a flexible composite based on a piezopolymer layer and a magnetic elastomer layer was investigated. The study focused on investigating the dynamic magnetoelectric effect in various configurations of external alternating and constant homogeneous magnetic fields (L-T and T-T configurations). The T-T geometry exhibited a two orders of magnitude higher coefficient of the magnetoelectric effect compared to the L-T geometry. Mechanisms of structure bending in both geometries were proposed and discussed. A theory was put forward to explain the change in the resonance frequency in a uniform external field. A giant value of frequency tuning in a magnetic field of up to 362% was demonstrated; one of the highest values of the magnetoelectric effect yet recorded in polymer multiferroics was observed, reaching up to 134.3 V/(Oe∙cm).

2.
Polymers (Basel) ; 15(10)2023 May 10.
Article in English | MEDLINE | ID: mdl-37242837

ABSTRACT

Multilayered magnetoelectric materials are of great interest for investigations due to their unique tuneable properties and giant values of magnetoelectric effect. The flexible layered structures consisting of soft components can reveal lower values of the resonant frequency for the dynamic magnetoelectric effect appearing in bending deformation mode. The double-layered structure based on the piezoelectric polymer polyvinylidene fluoride and a magnetoactive elastomer (MAE) with carbonyl iron particles in a cantilever configuration was investigated in this work. The gradient AC magnetic field was applied to the structure, causing the bending of the sample due to the attraction acting on the magnetic component. The resonant enhancement of the magnetoelectric effect was observed. The main resonant frequency for the samples depended on the MAE properties, namely, their thickness and concentration of iron particles, and was 156-163 Hz for a 0.3 mm MAE layer and 50-72 Hz for a 3 mm MAE layer; the resonant frequency depended on bias DC magnetic field as well. The results obtained can extend the application area of these devices for energy harvesting.

3.
Polymers (Basel) ; 14(22)2022 Nov 08.
Article in English | MEDLINE | ID: mdl-36432934

ABSTRACT

Polymer-based multiferroics, combining magnetic and piezoelectric properties, are studied experimentally-from synthesis to multi-parameter characterization-in view of their prospects for fabricating biocompatible scaffolds. The main advantage of these systems is facile generation of mechanical deformations and electric signals in response to external magnetic fields. Herein, we address the composites based on PVDF-TrFE polymer matrices filled with a combination of piezoelectric (BaTiO3, BTO) and/or ferrimagnetic (Zn0.25Co0.75Fe2O4, ZCFO) particles. It is shown that the presence of BTO micron-size particles favors stripe-type structuring of the ZCFO filler and enhances the magnetoelectric response of the sample up to 18.6 mV/(cm∙Oe). Besides that, the admixing of BTO particles is crucial because the mechanical properties of the composite filled with only ZCFO is much less efficient in transforming magnetic excitations into the mechanical and electric responses. Attention is focused on the local surfacial mechanical properties since those, to a great extent, determine the fate of stem cells cultivated on these surfaces. The nano-indentation tests are accomplished with the aid of scanning probe microscopy technique. With their proven suitable mechanical properties, a high level of magnetoelectric conversion and also biocompatibility, the composites of the considered type are enticing as the materials for multiferroic-based polymer scaffolds.

4.
Nanomaterials (Basel) ; 11(7)2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34361221

ABSTRACT

Magnetic oxides are promising materials for alternative health diagnoses and treatments. The aim of this work is to understand the dependence of the heating power with the nanoparticle (NP) mean size, for the manganite composition La0.75Sr0.25MnO3 (LSMO)-the one with maximum critical temperature for the whole La/Sr ratio of the series. We have prepared four different samples, each one annealed at different temperatures, in order to produce different mean NP sizes, ranging from 26 nm up to 106 nm. Magnetization measurements revealed a FC-ZFC irreversibility and from the coercive field as function of temperature we determined the blocking temperature. A phase diagram was delivered as a function of the NP mean size and, based on this, the heating mechanism understood. Small NPs (26 nm) is heated up within the paramagnetic range of temperature (T>Tc), and therefore provide low heating efficiency; while bigger NPs are heated up, from room temperature, within the magnetically blocked range of temperature (TT>TB), for intermediate mean diameter size of 37 nm, with maximum efficiency of heat transfer.

5.
Nanomaterials (Basel) ; 11(5)2021 Apr 28.
Article in English | MEDLINE | ID: mdl-33925105

ABSTRACT

Polymer-based magnetoelectric composite materials have attracted a lot of attention due to their high potential in various types of applications as magnetic field sensors, energy harvesting, and biomedical devices. Current researches are focused on the increase in the efficiency of magnetoelectric transformation. In this work, a new strategy of arrangement of clusters of magnetic nanoparticles by an external magnetic field in PVDF and PFVD-TrFE matrixes is proposed to increase the voltage coefficient (αME) of the magnetoelectric effect. Another strategy is the use of 3-component composites through the inclusion of piezoelectric BaTiO3 particles. Developed strategies allow us to increase the αME value from ~5 mV/cm·Oe for the composite of randomly distributed CoFe2O4 nanoparticles in PVDF matrix to ~18.5 mV/cm·Oe for a composite of magnetic particles in PVDF-TrFE matrix with 5%wt of piezoelectric particles. The applicability of such materials as bioactive surface is demonstrated on neural crest stem cell cultures.

6.
Polymers (Basel) ; 14(1)2021 Dec 31.
Article in English | MEDLINE | ID: mdl-35012174

ABSTRACT

Multiferroics are materials that electrically polarize when subjected to a magnetic field and magnetize under the action of an electric field. In composites, the multiferroic effect is achieved by mixing of ferromagnetic (FM) and ferroelectric (FE) particles. The FM particles are prone to magnetostriction (field-induced deformation), whereas the FE particles display piezoelectricity (electrically polarize under mechanical stress). In solid composites, where the FM and FE grains are in tight contact, the combination of these effects directly leads to multiferroic behavior. In the present work, we considered the FM/FE composites with soft polymer bases, where the particles of alternative kinds are remote from one another. In these systems, the multiferroic coupling is different and more complicated in comparison with the solid ones as it is essentially mediated by an electromagnetically neutral matrix. When either of the fields, magnetic or electric, acts on the 'akin' particles (FM or FE) it causes their displacement and by that perturbs the particle elastic environments. The induced mechanical stresses spread over the matrix and inevitably affect the particles of an alternative kind. Therefore, magnetization causes an electric response (due to the piezoeffect in FE) whereas electric polarization might entail a magnetic response (due to the magnetostriction effect in FM). A numerical model accounting for the multiferroic behavior of a polymer composite of the above-described type is proposed and confirmed experimentally on a polymer-based dispersion of iron and lead zirconate micron-size particles.

7.
Int J Mol Sci ; 20(6)2019 Mar 22.
Article in English | MEDLINE | ID: mdl-30909424

ABSTRACT

We present the results of numerical simulation of magnetodielectric effect (MDE) in magnetorheological elastomers (MRE)-the change of effective permittivity of elastomer placed under the external magnetic field. The computer model of effect is based on an assumption about the displacement of magnetic particles inside the elastic matrix under the external magnetic field and the formation of chain-like structures. Such displacement of metallic particles between the planes of capacitor leads to the change of capacity, which can be considered as a change of effective permittivity of elastomer caused by magnetic field (magnetodielectric effect). In the literature, mainly the 2D approach is used to model similar effects. In this paper, we present a new approach of magnetorheological elastomers simulation-a 3D-model of the magnetodielectric effect with ability to simulate systems of 10 5 particles. Within the framework of the model, three types of particle size distributions were simulated, which gives an advantage over previously reported approaches. Lognormal size distribution was shown to give better qualitative match of the modeling and experimental results than monosized type. The developed model resulted in a good qualitative agreement with all experimental data obtained earlier for Fe-based elastomers. The proposed model is useful to study these novel functional materials, analyze the features of magnetodielectric effect and predict the optimal composition of magnetorheological elastomers for further profound experimental study.


Subject(s)
Elastomers , Electromagnetic Phenomena , Magnetic Fields , Models, Theoretical , Algorithms
SELECTION OF CITATIONS
SEARCH DETAIL
...