Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis Exp ; (206)2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38647333

ABSTRACT

Microvascular endothelial cells (MVECs) have many critical roles, including control of vascular tone, regulation of thrombosis, and angiogenesis. Significant heterogeneity in endothelial cell (EC) genotype and phenotype depends on their vascular bed and host disease state. The ability to isolate MVECs from tissue-specific vascular beds and individual patient groups offers the opportunity to directly compare MVEC function in different disease states. Here, using subcutaneous adipose tissue (SAT) taken at the time of insertion of cardiac implantable electronic devices (CIED), we describe a method for the isolation of a pure population of functional human subcutaneous adipose tissue MVEC (hSATMVEC) and an experimental model of hSATMVEC-adipocyte cross-talk. hSATMVEC were isolated following enzymatic digestion of SAT by incubation with anti-CD31 antibody-coated magnetic beads and passage through magnetic columns. hSATMVEC were grown and passaged on gelatin-coated plates. Experiments used cells at passages 2-4. Cells maintained classic features of EC morphology until at least passage 5. Flow cytometric assessment showed 99.5% purity of isolated hSATMVEC, defined as CD31+/CD144+/CD45-. Isolated hSATMVEC from controls had a population doubling time of approximately 57 h, and active proliferation was confirmed using a cell proliferation imaging kit. Isolated hSATMVEC function was assessed using their response to insulin stimulation and angiogenic tube-forming potential. We then established an hSATMVEC-subcutaneous adipocyte co-culture model to study cellular cross-talk and demonstrated a downstream effect of hSATMVEC on adipocyte function. hSATMVEC can be isolated from SAT taken at the time of CIED insertion and are of sufficient purity to both experimentally phenotype and study hSATMVEC-adipocyte cross-talk.


Subject(s)
Adipocytes , Endothelial Cells , Subcutaneous Fat , Humans , Adipocytes/cytology , Endothelial Cells/cytology , Endothelial Cells/metabolism , Subcutaneous Fat/cytology , Cell Communication/physiology
3.
EMBO Rep ; 22(5): e50767, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33934497

ABSTRACT

Changes in composition of the intestinal microbiota are linked to the development of obesity and can lead to endothelial cell (EC) dysfunction. It is unknown whether EC can directly influence the microbiota. Insulin-like growth factor-1 (IGF-1) and its receptor (IGF-1R) are critical for coupling nutritional status and cellular growth; IGF-1R is expressed in multiple cell types including EC. The role of ECIGF-1R in the response to nutritional obesity is unexplored. To examine this, we use gene-modified mice with EC-specific overexpression of human IGF-1R (hIGFREO) and their wild-type littermates. After high-fat feeding, hIGFREO weigh less, have reduced adiposity and have improved glucose tolerance. hIGFREO show an altered gene expression and altered microbial diversity in the gut, including a relative increase in the beneficial genus Akkermansia. The depletion of gut microbiota with broad-spectrum antibiotics induces a loss of the favourable metabolic differences seen in hIGFREO mice. We show that IGF-1R facilitates crosstalk between the EC and the gut wall; this crosstalk protects against diet-induced obesity, as a result of an altered gut microbiota.


Subject(s)
Insulin Resistance , Microbiota , Animals , Diet, High-Fat/adverse effects , Mice , Mice, Inbred C57BL , Obesity/genetics , Receptor, IGF Type 1/genetics
4.
J Clin Invest ; 130(8): 4104-4117, 2020 08 03.
Article in English | MEDLINE | ID: mdl-32407295

ABSTRACT

Diabetes, obesity, and Alzheimer's disease (AD) are associated with vascular complications and impaired nitric oxide (NO) production. Furthermore, increased ß-site amyloid precursor protein-cleaving (APP-cleaving) enzyme 1 (BACE1), APP, and ß-amyloid (Aß) are linked with vascular disease development and increased BACE1 and Aß accompany hyperglycemia and hyperlipidemia. However, the causal relationship between obesity and diabetes, increased Aß, and vascular dysfunction is unclear. We report that diet-induced obesity (DIO) in mice increased plasma and vascular Aß42 that correlated with decreased NO bioavailability, endothelial dysfunction, and increased blood pressure. Genetic or pharmacological reduction of BACE1 activity and Aß42 prevented and reversed, respectively, these outcomes. In contrast, expression of human mutant APP in mice or Aß42 infusion into control diet-fed mice to mimic obese levels impaired NO production, vascular relaxation, and raised blood pressure. In humans, increased plasma Aß42 correlated with diabetes and endothelial dysfunction. Mechanistically, higher Aß42 reduced endothelial NO synthase (eNOS), cyclic GMP (cGMP), and protein kinase G (PKG) activity independently of diet, whereas endothelin-1 was increased by diet and Aß42. Lowering Aß42 reversed the DIO deficit in the eNOS/cGMP/PKG pathway and decreased endothelin-1. Our findings suggest that BACE1 inhibitors may have therapeutic value in the treatment of vascular disease associated with diabetes.


Subject(s)
Amyloid beta-Peptides/blood , Diabetes Mellitus/blood , Diabetic Angiopathies/blood , Obesity/blood , Peptide Fragments/blood , Signal Transduction , Amyloid beta-Peptides/genetics , Animals , Cyclic GMP-Dependent Protein Kinases/genetics , Cyclic GMP-Dependent Protein Kinases/metabolism , Diabetes Mellitus/genetics , Diabetes Mellitus/pathology , Diabetic Angiopathies/genetics , Diabetic Angiopathies/pathology , Female , Humans , Male , Mice , Mice, Transgenic , Nitric Oxide/blood , Nitric Oxide/genetics , Nitric Oxide Synthase Type III/genetics , Nitric Oxide Synthase Type III/metabolism , Obesity/genetics , Obesity/pathology , Peptide Fragments/genetics
5.
Diab Vasc Dis Res ; 16(2): 160-170, 2019 03.
Article in English | MEDLINE | ID: mdl-30295509

ABSTRACT

Insulin and insulin-like growth factor-1 stimulate specific responses in arteries, which may be disrupted by diet-induced obesity. We examined (1) temporal effects of high-fat diet compared to low-fat diet in mice on insulin receptor, insulin-like growth factor-1 receptor, insulin receptor/insulin-like growth factor-1 receptor hybrid receptor expression and insulin/insulin-like growth factor-1-mediated Akt phosphorylation in aorta; and (2) effects of high-fat diet on insulin and insulin-like growth factor-1-mediated Akt phosphorylation and vascular tone in resistance arteries. Medium-term high-fat diet (5 weeks) decreased insulin-like growth factor-1 receptor expression and increased hybrid expression (~30%) only. After long-term (16 weeks) high-fat diet, insulin receptor expression was reduced by ~30%, insulin-like growth factor-1 receptor expression decreased a further ~40% and hybrid expression increased a further ~60%. Independent correlates of hybrid receptor expression were high-fat diet, duration of high-fat diet and plasma insulin-like growth factor-1 (all p < 0.05). In aorta, insulin was a more potent activator of Akt than insulin-like growth factor-1, whereas in resistance arteries, insulin-like growth factor-1 was more potent than insulin. High-fat diet blunted insulin-mediated vasorelaxation ( p < 0.01) but had no effect on insulin-like growth factor-1-mediated vasorelaxation in resistance arteries. Our findings support the possibility that hybrid receptor level is influenced by nutritional and metabolic cues. Moreover, vessel-dependent effects of insulin and insulin-like growth factor-1 on vascular tone and Akt activation may have implications in treating obesity-related vascular disease.


Subject(s)
Aorta/drug effects , Insulin/pharmacology , Mesenteric Arteries/drug effects , Obesity/enzymology , Proto-Oncogene Proteins c-akt/metabolism , Receptor, IGF Type 1/metabolism , Vascular Resistance/drug effects , Animals , Antigens, CD/metabolism , Aorta/enzymology , Cells, Cultured , Diet, Fat-Restricted , Diet, High-Fat , Disease Models, Animal , Enzyme Activation , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/enzymology , Humans , Insulin-Like Growth Factor I/pharmacology , Male , Mesenteric Arteries/enzymology , Mesenteric Arteries/physiopathology , Mice, Inbred C57BL , Obesity/blood , Obesity/physiopathology , Phosphorylation , Receptor, IGF Type 1/genetics , Receptor, Insulin/metabolism , Receptors, Somatomedin/metabolism , Signal Transduction/drug effects , Vasodilation/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...